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Abstract

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of information technology
Signal processing laboratory
SEPPÄNEN, JARNO: Computational models of musical meter recognition
Master of Science thesis, 61 pages, 11 enclosure pages
Examiners: Prof. Petri Haavisto, M.Sc. Anssi Klapuri, and M.Sc. Matti Hämäläinen
Funding: Nokia Oyj
November 2001
Keywords: music analysis, rhythm, meter, beat, tatum, phenomenal accent

The thesis proposes an algorithm for the recognition of musical meter from acoustic signals
of music. Musical meter is a part of rhythm that is constantly present in music, as it spans
the musical time base. The proposed model is capable of finding metrical levels, including
the beat and the tatum, in real time from a musical audio signal. The model comprises four
main components: an onset detector, a tatum estimator, a phenomenal accent model, and
a beat estimator. The onset detector finds distinct sound onsets from an acoustic signal,
using multiband signal processing. After this, the tatum, which is the lowest metrical level,
is computed from onset times. Phenomenal accents are computed from a set of 16 acoustic
signal features using Bayesian pattern recognition. The tatum and the accents then yield
the beat. The proposed model operates causally and is able to respond to tempo changes.
The design of the model aims at generality in regard to musical genres, and thus the model
is trained and tested using 330 music excerpts from multiple genres. The model perfor-
mance varies according to the rhythmic difficulty of the input signal. Most pop/rock music
poses no problems for the algorithm, while classical music and expressive jazz pieces are
intractable. The model produces more errors than Eric Scheirer’s beat tracker, but at the
same time it follows more metrical levels than Scheirer’s model. The results of this the-
sis are directly applicable in music production and post-processing. The access to musical
time enables new levels of productivity and automation in both music software and hard-
ware. Meter-synchronized comparison, mixing, and editing of pieces of music is possible.
Robust meter recognition is a vital component of music information retrieval applications.
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Tiivistelmä

TAMPEREEN TEKNILLINEN KORKEAKOULU
Tietotekniikan osasto
Signaalinkäsittelyn laitos
SEPPÄNEN, JARNO: Musiikin metrin tunnistuksen laskennallisia malleja
Diplomityö, 61 sivua, 11 liitesivua
Tarkastajat: prof. Petri Haavisto, DI Anssi Klapuri ja DI Matti Hämäläinen
Rahoittaja: Nokia Oyj
Marraskuu 2001
Avainsanat: musiikkianalyysi, rytmi, metri, isku, tatum, fenomenaalinen aksentti

Tässä työssä kuvataan menetelmä musiikin metrin tunnistamiseksi akustisesta musiikkisig-
naalista. Musiikin metri on rytmin osa, joka virittää musikaalisen aikajanan ja on siksi koko
ajan läsnä musiikissa. Tässä esitetty menetelmä etsii iskun ja tatumin sekä muita metrisiä
tasoja musiikkisignaalista reaaliajassa. Malli jakautuu neljään pääosaan, jotka ovat aluke-
tunnistin, tatumin havaitsija, fenomenaalisen aksentin malli sekä iskun havaitsija. Aluke-
tunnistin etsii musiikkisignaalista erillisten äänten alkuhetkiä taajuuskaistoihin perustuvan
signaalinkäsittelyn avulla. Äänten alkuhetkien perusteella lasketaan metrin alin taso eli ta-
tum. Fenomenaalinen aksentti lasketaan 16:sta akustisesta signaalipiirteestä soveltamalla
bayesiläistä hahmontunnistusta. Kuvattu menetelmä toimii kausaalisesti ja pystyy reagoi-
maan myös tempon vaihteluihin. Työssä esitelty menetelmä optimoidaan ja testataan käyt-
tämällä 330:tä CD-levyltä otettua musiikkinäytettä. Näytteet sisältävät useita musiikkityy-
lejä, koska menetelmä on suunniteltu musiikkityylistä riippumattomaksi. Menetelmän suo-
rituskyky vaihtelee musiikin rytmin vaikeuden mukaan. Suurin osa pop- ja rockmusiikista
ei aiheuta ongelmia menetelmälle, mutta klassisesta musiikista ja monimutkaisesta jazzista
se ei suoriudu. Malli antaa enemmän virheitä kuin Eric Scheirerin kehittämä iskunseuraaja-
algoritmi, mutta toisaalta se antaa myös tuloksia useammasta metrin tasosta kuin Scheirerin
malli. Tämän työn tuloksia voidaan suoraan soveltaa musiikin tuotannossa ja jälkikäsitte-
lyssä. Musikaalisen ajan käsittely antaa uusia mahdollisuuksia tehostaa ja automatisoida
musiikkiohjelmistoja ja -laitteita sekä niiden käyttöä. Musiikkikappaleiden vertailu, mik-
saus ja muokkaus on mahdollista tahdistaa metrin avulla. Vakaasti toimiva metrin tunnistus
on tärkeä osa musiikin hakusovelluksia.
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Glossary

A posteriori The posterior probability distribution p(ω|x) of an event ω in Bayesian
pattern recognition.

A priori The prior probability P (ω) of an event ω in Bayesian pattern recognition.
Accelerando Italian for a gradual acceleration of tempo.
Accent Musical stress applied to a note.
Asynchronous Data transfer that happens irregularly, not controlled by a clock; also

called event- or message-based transfer; the transfer mode used with
symbolic data.

Bar See measure.
Beat The most salient pulsation, both an individual pulse and all the pulses

on the same level; equals foot tapping times; some other literature uses
“tactus” to refer to beats and “beat” to refer to pulses.

Beat grid The set of time instants that belong to the beat level.
Beat period The time between neighboring pulses on the beat level; in other literature

also referred to as inter-beat interval, or IBI.
BPF A band-pass filter.
BPM Beats per minute; unit of tempo, or beat rate; in other literature also re-

ferred to as M.M., or Mälzel’s metronome, in honor of Johannes Mälzel,
the inventor of the metronome.

Cepstrum A standard speech and audio processing representation for spectral
shape.

DCT The discrete cosine transform, a signal processing mechanism used in
cepstrum computation.

EM The expectation-maximization algorithm is used to optimize the para-
meters of a Gaussian mixture model (GMM).

FFT The fast Fourier transform; usually used to denote the discrete Fourier
transform.

GCD Greatest common divisor; an integer factor of a set of integers.
GMM Gaussian mixture model; Bayesian pattern recognition with a specific

class of likelihood functions.
Grid A set of regularly spaced time instants.
Grouping The combination of notes together into groups that contain one musical

motive.
IIR A class of digital filters that exhibit an infinite impulse response.
IOI Inter-onset interval; the time between two sound onsets.
Isochronous Occurring at equal intervals of time.
LDA Linear discriminant analysis, a minimum-distance pattern recognition

method.
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Likelihood A probability distribution function (PDF) p(x|ω) for representing evi-
dence in Bayesian pattern recognition.

LPF A low-pass filter.
MAP Maximum a posteriori; a Bayesian pattern recognition method assuming

differing prior probabilities.
Measure A metrical unit subsuming several beats; also called the bar.
Meter The hierarchy of pulsations that is always present when listening to mu-

sic; comprises measure, beat, and tatum, among other levels.
Metrical grid A transcription of meter that shows all the (relevant) metrical levels.
MIDI A data format for storing and transmitting music in a symbolic format;

shorthand for Musical Instrument Digital Interface.
ML Maximum likelihood; a Bayesian pattern recognition method assuming

equal prior probabilities.
Note A singular musical event.
Offbeat A time instant that does not coincide with a beat.
Onset The starting point (attack) of an individual note.
PDF The probability distribution function of a random variable, denoted p(x).
Pulse An individual time instant; also a set of pulses with a common period; in

other literature also referred to as “beat.”
Ritardando Italian for a gradual deceleration of tempo.
RMS Root–mean–square; a technical measure of signal level.
Rubato Italian for flexible variation of tempo; also tempo rubato.
Sforzando Italian for sudden and strong accent; plural sforzandi.
Signal A discrete-time function, where time takes values from a regular clock;

signals are transfered synchronously.
Symbol A function which changes its values irregularly; symbolic transfers are

asynchronous.
Synchronous Data transfer that happens according to a regular clock; the transfer mode

of signals.
Tatum The lowest/smallest metrical unit; the pulse that has the fastest pulsation.

In some literature referred to as clock.
Tatum grid The set of time instants, i.e. pulses, on the tatum metrical level.
Tempo Italian for the time (i.e. speed) of music; expressed as the beat rate, often

measured in BPM units; plural tempi.
Time signature The numeric indication of musical measure length in the beginning of

scores.
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1 Introduction

Music is as universal a phenomenon as speech: people all over the world play and enjoy
music. Music exists in different forms in different cultures, but still the basic value of music
is independent of cultural aspects. Music is understood as thought-provoking art or a useful
tool, it evokes feelings and discussion, and is used for relaxation everywhere. Music has
existed probably as long as, or even longer than speech. It seems that both speech and music
have fulfilled important requirements in the history of mankind, in rational and emotional
communication, respectively. [CK99]

In this thesis I discuss musical rhythm, which is as profound and historical a phenomenon
as music itself. Musical styles have changed over time, from baroque to post-modern, and
from acoustic to electronic, but rhythm has sustained its importance within the aesthetics of
music.

Humans possess a natural ability to absorb and appreciate music, even if they are completely
unaware of the theory of music. Although intricate theories of the composition of music
exist, music is always listened to with emotions. I argue that the natural music-listening
ability best manifests itself in the act of dancing. In fact, rhythm as a whole is speculated
to being a direct consequence of movement [Cla99, p. 495]. Dancing is a concretization
of music appreciation, through swinging of hands and clattering of feet. The speed and
timing of dancing is purely based on the rhythm of music, and the principal features humans
recognize from rhythm are indeed connected with dancing [EGP00].

The need to automatically process music was justified when the phonograph was invented.
Here, ‘automatic processing’ is used to refer to applications such as the automatic retrieval
and playback of music from a record collection. Recorded music has been available al-
ready in the 19th century, and the amount of recorded music has since increased fast, but
the automatic analysis and processing of music has become feasible only since the 1980’s
after computer technology had advanced to a sufficient level. Manual post-processing of
recorded music has been carried out since musique concrète on the 1940’s [Pal99], and
it even became a widely accepted means to create new music through the invention of
sampling. However, only a limited number of automatic or semiautomatic music post-
processing tools exist currently, and many of them still are quite far from really functional
automated processing of recorded music.

Automatic processing of music can refer to automatically recognizing, retrieving, editing,
and playing recorded music, based on very simple commands or even no commands at all
from a user. The scope of this work is in processing recorded music, that is, music in
the form of acoustic signals. The processing of acoustic signals of music poses a signif-
icant change of field and an increase in level of difficulty compared to the processing of
scores of music. During the last ten years, the theory and practice of signal processing ap-
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plied to acoustic musical signals, termed musical signal processing, has advanced rapidly.
Wherever possible, digital signal processing has replaced earlier acoustic or analog elec-
trical means in the production and consumption of music. Signal processing has enabled
perceptual compression of music, based on investigations of auditory perception. There is
also a body of recent research on music perception, of which the part on rhythm and meter
estimation, beat and tempo tracking, and sound onset detection are relevant to this thesis.

An important component in the automated processing of music is the analysis, i.e., un-
derstanding of musical signals by a computer, and this is also the component still missing
as of today. In analyzing musical signals, the aim is to understand and replicate the way
humans experience music, and thus the research into computational analysis of musical
signals is a combination of music psychology and signal processing. Once we have a com-
putational model of music perception, the number of applications appear limitless. Massive
archives of music become highly useful and usable even for non-experts. The maintenance
and assembly of coherent musical databases becomes quite straightforward. A collection
of music will transform into a unique new musical instrument, played through the music
perception model capable of fusing songs and sounds from the collection. One prospect of
music perception model is the categorization of music. With the aid of perceptual models,
computers will be able to classify musical recordings to slow or fast, to classical or modern,
to instrumental or vocal, and according to genre. This will be very useful in all the numer-
ous situations where music is used: for listeners, radio stations, libraries, music and film
producers, musicians, etc.

The concept of rhythm breaks down into two constituent parts: grouping and meter [LJ83].
I am mainly interested in the latter phenomenon, into which e.g. the percept of beat be-
longs. In this thesis, I propose a novel method for musical meter recognition at the beat
and tatum levels, where the former refers to the most salient level of meter and the latter to
the lowest metrical level. The metrical structure of a piece of music describes the compre-
hension of musical time in the piece, following tempo changes such as accelerandos and
ritardandos [Cla99]. Recognition of musical meter is a vital subtask in approaching music
perception models.

The beat and meter recognition model proposed in this thesis is primarily a bottom-up pro-
cedure. Musical knowledge is incorporated into the estimation of phenomenal accentuation
of different locations in the input signal via supervised learning, but otherwise the algorithm
is a stack of procedures rooted on the actual acoustic signal, with the highest-residing pro-
cedure outputting the beat. The processing phases from input to output are sound onset
detection, tatum estimation, phenomenal accent modeling, and beat estimation.

A number of previously published models on beat and meter recognition are reviewed in
addition to the proposed model. The published models vary from MIDI (Musical Instru-
ment Digital Interface) analysis algorithms to audio signal processing methods, and from
simple autocorrelation models to complex symbolic artificial intelligence systems for me-
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ter recognition. The performance of the proposed model is compared to the performance of
one of the reviewed models [Sch98b]. The performance of the models in tracking the beat
from commercial music excerpts is compared. The comparison was done using excerpts of
330 different songs sampled from commercially published CD records.

This thesis is divided into the following chapters:

• Chapter 2, Theoretical background, introduces the reader with the theoretical concepts
used in this thesis;
• Chapter 3, Previous models, reviews the previous literature related to models of meter

recognition;
• Chapter 4, Proposed model, describes the construction and functionality of the pro-

posed meter recognition model;
• Chapter 5, Model performance, evaluates model performance and introduces the related

constraints and measures;
• Chapter 6, Conclusions, recapitulates the propositions and contributions made in this

thesis;
• Appendix A, Music corpus, describes the music samples used in this research; and
• Appendix B, Acoustic signal features, explains the signal description methods used in

this research.
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2 Theoretical background

This work is based on theory of music and pattern recognition, in addition to the theory of
signal processing. Assuming familiarity with the basics of linear signal processing, I pro-
ceed to describe the parts of music theory and pattern recognition theory applied in this
work.

2.1 Rhythm

Generally, music is composed of melody, harmony, and rhythm, and all musical works
are perceived and analyzed based on these. Rhythm and harmony are regarded as being
complementary to each other, in the sense that the same piece of music can be analyzed
purely from a rhythmic or a harmonic aspect, if necessary. [CK99]

Nevertheless, rhythm is a vague and ambiguous idiom, and it is hard to describe rigorously.
Especially, the relationship between rhythm and meter may be hard to understand at first —
this is nicely illustrated by the following quotes, in which the descriptions form a vicious
circle.

“rhythm noun 1 periodical accent and duration of notes in music. 2 type of struc-
ture formed by this. . . . (see also metre, . . . )”
“metre noun (US meter) . . . 3 basic rhythm of music.”
Oxford Dictionary and Thesaurus, Oxford University Press, 1996

As correctly explained in the above quote, rhythms are formed from notes primarily through
the accents and durations of notes. The accents, and thus the rhythms, are periodic in nature,
which means that the note and accent patterns, or parts thereof, are not isolated but repeat
again and again over time. Looking in more detail, rhythm is caused by

• note timings and durations, in relation to neighboring notes, and
• note accents, comprising e.g. sound loudness, pitch, and timbre.

These physical phenomena evoke a perceptual response to rhythm, which involves such
aspects as

• pulsation, due to the repetition of note patterns,
• structure, which defines the importance of notes,
• velocity, or a sensation of a relaxed vs. a hurried feeling, and
• human motor abilities, which set absolute limits for rhythmic percepts. [Cla99]
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The above properties, as well as the whole concept of rhythm, can be divided into two per-
ceptual categories: grouping and meter. Like rhythm and harmony, these two categories
also complement each other — they can both be observed separately but a complete anal-
ysis of a rhythm requires both. Meter is a description of the perceptual pulsation that is
induced by rhythms. When we listen to music, we recognize several pulsations at the same
time; therefore, meter also has multiple coexisting levels. The pulsations continue from the
beginning of music to the end. In other words, meter is present in music all the time. Group-
ing, on the other hand, is a local phenomenon, and only corresponds to a limited number
of notes at a time. In grouping, sequences of notes are sectioned into separate motives by
combining notes together or separating them. [LJ83, p. 12]

Undoubtedly the single most important rhythmic property is the beat, sometimes referred to
as the “tactus” [LJ83]. The beat is a part of meter, defined by the tapping of a foot by most
people during listening to music; beats are the points in time when people tap their foot to
the floor.1 In addition to foot-tapping, the sensation of the beat is embodied in dancing and
other music-inspired acts. From this connection between the beat and human movement
emerges also a preferred beat period of approximately 600–700 ms, corresponding to a
tempo, or beat rate, of 86–100 beats per minute (BPM) [Par94]. In engineering terms, the
preferred tempi can be interpreted as a resonance in the human response to music.

2.2 Music notation

Music on a sheet of paper is considerably different from heard music. Scheirer points out
that notation is virtually useless for music perception research due to (a) the limitations
of the music notation system, (b) the underlying assumptions, and (c) the favor for ex-
pressive performance. The essence of notation is to provide instructions for playing, i.e.,
generating music, not perceiving it, and this makes using notes to aid in perceiving music
ill-adviced [Sch00].

Figure 2.1 shows two examples of music notation. The two examples consist of only re-
peating eight notes (also called quavers) and notated accents. Accents are marked with the
‘>’ symbol; whenever there is an accent symbol below or above a note, the note is played
stressed. The value 4/4 in the beginning of the example scores is the time signature, and it
determines the duration of one measure. One can also say that the piece is “in 4/4 meter.”
In this case, this means that one measure consists of four quarter notes (also called crotch-
ets). In Figure 2.1 you can see how the measure boundaries are indicated with vertical lines
eight quavers apart. The measure is sometimes called the bar.

1That is not to say that beats do not exist when someone does not tap at all during listening; of course the

people have to agree to tap while listening.
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Figure 2.1: Two simple isochronous trains of notes with different accent (‘>’) and similar beat (‘B’) patterns.
Tempo is specified as 100 quarter notes per minute.

A particular problem with notation is the relation of the perceived beat with the notes. One
can often hear claims that the quarter note equals the beat in notation, but this statement
is generally false despite the fact that it may happen that the quarter note coincides with
the beat. Due to the essence of notation as a generative medium, it is really not possible
to assign a certain note duration to the beat from beforehand. This example illustrates the
difference of notation and music perception: even for such a profound perceptual music
concept as the beat there is no well-defined notational counterpart. The beats are labeled in
Figure 2.1 with the character ‘B,’ but this is not standard notation. The labeling is correct
only if the notated tempo and accent structure are strictly obeyed during playing.

The notations in this thesis should be used as a guide to producing small rhythmic themes
and then to comparing the annotations with the perception of the generated rhythms. In
playing the notes, I intend no extra-notational expression to be made. The beat of the
example notations has been anchored with respect to the notes by using explicit tempo
markings.

2.3 Meter and the metrical structure

Meter is the organization of music into pulses. A pulse is a set of regularly repeating time
instants — I will also use “pulse” to refer to the individual time instants if the meaning is
clear in the context. Meter is one component of rhythm, the other one being grouping. The
pulsations induced by meter are present at all times in a musical piece. The most salient
pulsation is the beat, as mentioned above, and tapping along to the beat is a fundamental
musical skill. Meter and the associated pulsations create a musical time base, making note
durations and musical measures possible. Meter contains several coexisting levels, which
are organized into a hierarchy.

Assuming a constant tempo, all metrical pulses are isochronous, i.e., the time between the
pulses is constant. Meter can be measured on different levels, and the rate of pulses on lower
metrical levels is faster than on higher levels. As mentioned above, the most important and
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interesting metrical pulsation is the beat, which resides in the vicinity of a moderate pulse
rate of 86–100 BPM.

However, tempo changes do complicate things somewhat. It does generally not apply that
the absolute time between pulses does not change. On the countrary, means such as ac-
celerando, ritardando and tempo rubato2 are about specifically modulating the tempo ei-
ther gradually or abruptly in order to arrive at artistic ends. Under such modulation, the
metrical pulses are no more isochronous, and the best general definition can only state that
the metrical pulses be regular in time.

Observing the beat period through accelerandi and other such modulations gives a tempo
curve, which depicts the tempo as a function of time since the start of the piece. It can be
debated whether structuring music with the aid of a tempo curve is useful at all or whether
it is even harmful [DH93], but tempo curves can give an intuitive starting point for piece
analysis and even post-processing [MZ94].

2.3.1 Hierarchy of meter

There exists several levels of meter, indicating that meter is hierarchical in nature. In ad-
dition to the beat, the measure, also known as the bar, and the tatum are metrical units.
The measure is usually 3–4 times longer than the beat, whereas the tatum3 is (almost) al-
ways shorter than the beat. The period of the measure is indicated in the time signature.
The tatum is the lowest metrical level, which Bilmes describes by saying “often, it is de-
fined by the smallest time interval between successive notes in a rhythmic phrase” [Bil93b,
p. 22]. The tatum may equal the beat in rare cases where the shortest notes equal the beat
period. In addition to the abovementioned levels, there are several unnamed levels of meter
located between the tatum and the beat, between the beat and the measure and also above
the measure.

According to Lerdahl and Jackendoff, the metrical hierarchy is built from two proper-
ties [LJ83]:

1. Every pulse on a given metrical level is also a pulse on all the lower metrical levels.
Moreover, pulses on a given level are strong pulses on the next-lower level, while all
other pulses on that level are weak.

2. Metrical levels obey a binary/ternary division. The periods of pulses between neigh-
boring metrical levels are related either by a factor of two or three.

2Meaning acceleration, deceleration, and expressive tempo changes, respectively.
3The term “tatum” has been derived from “temporal atom” by Bilmes [Bil93b]. The tatum has also been

called the clock in some occasions in previous literature.
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Figure 2.2: An example metrical grid showing hierarchy, strong/weak dichotomy, binary/ternary division, and
a warped absolute time axis.

Actually, there are a few exceptions to the second rule, which are namely contemporary
songs with an odd meter, such as the exemplary Take Five by Dave Brubeck (in 5/4 meter).

After the beat, the second important metrical level is perhaps the tatum or the measure. For
computational music processing applications the tatum approaches the importance of the
beat. This is because the pulse intervals on all other metrical levels, including the beat, are
integral multiples of the tatum. The tatum is an ideal short-time segmentation for musical
signals, essentially due to the fact that it is “that time division that most highly coincides
with all note onsets” [Bil93b, p. 22].

Figure 2.2 shows the transcription of metrical structure called the metrical grid together
with an absolute time axis. In a metrical grid, the pulses are drawn as dots, and individual
metrical levels are organized as horizontal pulse trains, with time advancing from left to
right. The different levels are stacked on top of each other, with low metrical levels on
bottom and high on top.4 In the example, between the tatum and the beat there is one
subordinate level. This level is a binary sublevel of the beat, and the tatum is a ternary
sublevel of the subordinate level. All other divisions are binary. The large-scale levels in
general refer to all levels above the measure level.

Figures 2.3 and 2.4 give two examples of percussion rhythms and the associated metrical
grids. The metrical grid is transcribed on the staff labeled “Meter.” In the figures, the

4The representation of Lerdahl’s and Jackendoff’s is vertically reversed in comparison to this, i.e., they

draw the lowest metrical level on top [LJ83].
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Figure 2.3: An example of a metrical structure, transcribed on four levels of hierarchy.
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Figure 2.4: Another example of a metrical structure, shown on five levels of hierarchy.

tatum is the lowest horizontal pulse train on the metrical grid. In these two examples, the
relationships between the beat and the tatum are clearly different. In Figure 2.3 the beat is
the second pulse train from the bottom and one beat equals two tatums, while in Figure 2.4
the beat is the third-lowest level and one beat is six tatums. These examples try to illustrate
that it is not possible to compute the tatum directly from the beat nor vice versa.

What is not transcribed in the example figures are the metrical levels above the measure.
The metrical levels higher than the beat are collectively called the large-scale metrical struc-
ture. As higher and higher levels are considered, locating the pulses becomes more and
more ambiguous even when given access to the complete score to a piece [LJ83]. Conse-
quently, the analysis of large-scale metrical structure apart from the measure is not feasible.
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2.3.2 Accents

An accent is musical stress applied to a note. The different accents on notes and voices
contribute to the sensation of the beat. On a simple isochronous train of notes, the accentu-
ated notes tend to coincide with the perception of the beats. In the case where the accents
are regularly spaced and are at a moderate rate, this is obvious, while in the case where the
accents carry a rhythmic pattern, it may be harder to see.

Figure 2.1 showed two note trains with a regular and an irregular accent structure. In Fig-
ure 2.1(a) the accents have a clearly regular structure, and the beats coincide with the ac-
cented notes. In Figure 2.1(b) accents are used to play a rhythmic theme. The case in
Figure 2.1(b) is syncopated, which means that the beats do not always coincide with ac-
cents, nor do the accents always coincide with beats. Here, the beat is a regular grid of
positions, which only matches with accent positions in the long term (in range of tens of
beats). There may be offbeat accents (as the fourth note in Figure 2.1(b)) and even beats
without an accent (the first note of the second measure), but most beats do have an accented
note.

The notated accents, e.g. in Figure 2.1, indicate that the accented notes are played stressed
in comparison to the non-accented notes. In practice this means playing in a sharper or
louder manner, or even using a slight delay. This kind of accents which manifest their-
selves directly in the acoustic properties of notes are termed phenomenal accents [LJ83,
p. 17]. Other categories of accents are metrical accents, structural accents, and durational
accents [Par94]. Notes that have a metrical accent are stressed because they are positioned
in a metrically strong position. Structural accents refer to stress caused by a profound
harmonic or melodic effect, and durational accent refers to notes that are longer than the
surrounding notes.

Some notational properties that constitute the phenomenal accent, according to Lerdahl and
Jackendoff [LJ83, p. 17], are

• onsets of notes,
• sforzandi (louder notes) and other local stresses,
• long notes,
• sudden changes in dynamics or timbre,
• leaps to relatively high- or low-pitched notes, and
• harmonic changes.

Clearly, phenomenal accents cause acoustic effects that can be heard. Furthermore, these
cause perceptual effects, which in the end are responsible for the rhythm percept. How-
ever, the relationship between acoustic properties and the actual psychological response of
subjects is far from understood. So far, it is known that the abovementioned notational
properties coincide with metrically strong pulses such as beats. [LJ83]
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2.4 Statistical pattern recognition

The inspection of an acoustic musical signal for beats is based on statistical pattern recogni-
tion. The signal is first described using a plethora of signal features, and statistical methods
are then used first to classify the signal into accented (beat) and not accented (offbeat)
domains, and second, to select the features that are relevant for classification.

Let us denote a single feature vector as x = (x1 x2 x3 . . . xN)
T , where N is the feature

vector dimension. For classification purposes, we introduce the classes ωo, the set of all
offbeat feature vectors, and ωb, the set of all beat feature vectors. Classification is then
possible with the use of Bayes’ formula [DH73]

p(ωi|x) = p(x|ωi)P (ωi)∑
j p(x|ωj)P (ωj)

, (1)

where

• P (ωi) , P (x ∈ ωi) is the prior (also known as a priori) probability of the feature
vector x coming from the class ωi,
• p(x|ωi), the probability distribution of the features of a given class ωi, is called the

likelihood function of the class, and
• p(ωi|x) is the posterior (also known as a posteriori) probability distribution.

Maximum a posteriori (MAP) Bayesian pattern recognition in general classifies x to the
class ω̂ having the highest posterior of all classes [Kay93] [GR99],

ω̂ = argmax
ωi

p(ωi|x). (2)

The prior probabilities P (ωi) need to be assigned values by hand. While this is often incon-
ceivable, in this work there is a conceptual relevance for giving differing prior probabilities
for the beats and offbeats. The Bayesian pattern recognition framework is called maximum
likelihood (ML) if one is using equal prior probabilities [Kay93] [GR99]. The reason for
needing Bayes’ formula is that while it is not possible to compute the posterior p(ω i|x)
directly from the data, we have means for modeling the likelihoods p(x|ωi) from the data.

The premiss for the applicability of Bayes’ theorem is that the set {ωi} is a partition of
the set of all events, i.e., the set S , corresponding to the certain event [Pap91, p. 30].
A partition of S is a set of mutually exclusive events whose union equals S . In the case
of classes {ωi} the premiss holds, i.e., the classes ωb and ωo are mutually exclusive and
S = {ωb, ωo}.

Before classification, the statistical model at hand needs to be trained, that is, the likelihoods
p(x|ωi) need to be estimated from training data. For this we need to separate the set of all
the feature vectors {x} according to class, xi , {x |x ∈ ωi}. The parameters of the
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distribution p(x|ωi) are then trained to make p(x|ωi) model the actual distribution of the
feature vectors xi within each class ωi. In other words, we are approximating the true
feature distribution with a parametrized distribution p(x|ωi).

In this thesis, I am using three different methods to model the likelihood p(x|ω i). Depend-
ing on the method chosen, the pattern recognizer is called [DH73] [RJ93]

1. linear discriminant analysis (LDA),
2. multivariate Gaussian modeling, or
3. Gaussian mixture modeling (GMM).

All of these classifiers are based on the assumption that the feature data would be normally
distributed. Although this assertion most definitely does not hold, the classifiers still do suc-
ceed at modeling the feature space to some degree. Despite the theoretical discomfort, the
relatively lightweight and straightforward calculation required for these classifiers makes
them advantageous for this task.

In practice, the numerical computations are carried out with log-likelihoods L(x, ωi) =

ln p(x|ωi) and log-priors P(ωi) = lnP (ωi) instead of the actual likelihood distributions
and prior probabilities for better numerical stability. We can express Bayes’ theorem (1)
using log-likelihoods and log-priors as follows:

p(ωi|x) = 1∑
j exp [L(x, ωj)− L(x, ωi) + P(ωj)− P(ωi)]

. (3)

In some literature, features are normalized to have zero mean and unity covariance prior
to classification [Li00]. This is an effort to make the classifiers immune to correlations
and scale differences between individual features. However, this is not pertinent here, be-
cause all the classifiers explicitly take into account the means and (full) covariances of the
features. Equivalently, the classifiers are invariant to linear transforms of the feature space.

In addition to Bayesian pattern recognition using the above three classifiers, the k-nearest
neighbor (k-NN) classifier was also initially considered [DH73] [TG74]. Nonetheless, there
are two reasons which make it unsuitable for my use:

• The k-NN classifier makes no attempt to model the data set, i.e., to reduce its dimen-
sionality; the data set “is” the “model.”
• Therefore, classification requires the comparison of the unclassified sample with all of

the samples in the training set; in my case, this becomes practically impossible with
training set size exceeding 100000 vectors.

Despite the exclusion of the k-NN classifier, I am quite confident that the remaining classi-
fication methods are sufficient for getting an initial insight to the performance of different
signal features.
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2.4.1 Linear discriminant analysis

Linear discriminant analysis is a minimum-distance classification method that uses the Ma-
halanobis distance metric [DH73]. In the Mahalanobis metric the covariance matrix of the
data set is computed, the data is transformed as to eliminate inter-feature correlations, i.e.,
as to normalize covariance to unity, after which Euclidean distances are computed in the
normalized space. During training the data set is partitioned to different classes and for
each class the cluster mean vector µi and the covariance matrix Σi are computed from the
ensemble of N feature vectors {xi,j}Nj=1 belonging to the class ωi. Theoretically, the mean
vector µi and the covariance matrix Σi of the feature vectors belonging to a single class i

are defined as the expected values

µi = E {xi} and (4)

Σi = E {(xi − µi)(xi − µi)
T}, (5)

and in practice are estimated with the statistics [Pap91]

µi =
1

N

N∑
j=1

xi,j and (6)

Σi =
1

N

N∑
j=1

(xi,j − µi)(xi,j − µi)
T . (7)

Conventionally, classifying a single feature vector x with LDA is performed by computing
the squared Mahalanobis distances r2 from x to each of the class ωi cluster mean vec-
tors [TG74],

r(x, ωi)
2 = (x− µi)

TΣ−1
i (x− µi), (8)

and choosing the nearest class,5

ω̂ = argmin
ωi

r(x, ωi)
2. (9)

However, in order to fit into the maximum a posteriori classification framework, we convert
the Mahalanobis distance into an expression usable as a log-likelihood simply by letting

L(x, ωi) = −r(x, ωi)
2

2
. (10)

The maximization of (10) during maximum likelihood classification equates to minimizing
the Mahalanobis distance as in conventional LDA. An extension to conventional LDA is
the use of prior probabilities during maximum a posteriori classification.

5This means that the decision boundary is linear in the normalized space. In the actual feature space the

decision boundary is (hyper)spherical or (hyper)ellipsoidal.
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2.4.2 Multivariate Gaussian modeling

Multivariate Gaussian pattern recognition is based on the assumption that the features x i

of each class ωi are normally distributed, xi ∼ N(µi,Σi). The normal distribution is fitted
to the data by estimating the mean vector µi and the covariance matrix Σi for each class
exactly as is done in Equations (6) and (7) when computing the Mahalanobis distance for
LDA classification [RJ93]. The likelihood then equals the multivariate normal probability
distribution [Kay93]

p(x|ωi) =
1√

(2π)N |Σi|
e−

1
2
(x−�i)

T Σ−1
i (x−�i), (11)

from which we get the log-likelihood

L(x, ωi) = −N

2
ln 2π − 1

2
ln |Σi| − 1

2
(x− µi)

TΣ−1
i (x− µi)︸ ︷︷ ︸

r(x,ωi)2

. (12)

We can see the difference between LDA classification and multivariate Gaussian classifi-
cation by comparing Equations (10) and (12). In addition to the constant N

2
ln 2π, the only

difference between LDA and multivariate Gaussian classification is the additional normal-
ization term 1

2
ln |Σi|. Theoretically, LDA and multivariate Gaussian classification should

not give dramatically different classification results.

2.4.3 Gaussian mixture modeling

Maximum a posteriori with Gaussian mixture modeling attempts to fit a weighted
sum of multivariate Gaussian distributions to the data of each class. That is, x i ∼∑Ki

k=1 ci,kN(µi,k,Σi,k), where ci,k are the weights,
∑

k ck = 1, and µi,k and Σi,k are the
means and covariances of Ki multivariate Gaussian components. From this, we get the
log-likelihood

L(x, ωi) = ln

Ki∑
k=1

ci,kpk(x|ωi) (13)

for the mixture, where pk(x|ωi) is the likelihood of the kth Gaussian component, given by
Equation (11). [RJ93]

The most important parameters of GMM models, the numbers of components K i, cannot be
computed but must be specified manually. It is obvious that GMM is the most flexible of the
classifiers used, and it is indeed able to learn even other probability distributions than the
Gaussian, provided that the number of components is sufficiently large. On the other hand,
increasing the number of components increases the risk of overlearning, i.e., the model
being unable to generalize outside the learning data set [DH73]. In these simulations I used
three components both Ko = 3 for the offbeat class mixture and Kb = 3 for the beat class
mixture.
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The difference between GMM and the other two classifiers is that there is not an analytical
solution for composing the optimal mixture of Gaussians for given data, but the mixture has
to be found using an iterative search called the expectation-maximization (EM) algorithm.
The complete definition of the EM algorithm can be found in [RJ93] and [GH96].

2.4.4 Feature selection

The aim of feature selection is to pick the essential features and discard the redundant and
adverse features from the total set of implemented features [LM98]. The process of fea-
ture selection involves repeatedly taking a subset of all features for testing and computing
a performance score based on the classification results and ground truth labeling. The fea-
ture subset producing the highest score is used for classification. Three variables affect the
results of feature selection: first, the feature subset selection strategy, second, the classifi-
cation method, and third, the score metric. Three different strategies were used for feature
subset selection:

• single best feature search: test all
(
n
1

)
subsets containing exactly one feature vector;

• best feature pair search: test all
(
n
2

)
subsets containing exactly two feature vectors; and

• random subset sequential backwards elimination: starting from a random subset of the
full feature set, iteratively test its subsets that discard one feature, and select the best of
them.

Exhaustively testing all 2n − 1 subset combinations by brute force is not computationally
feasible as soon as the number of features n exceeds about 10. I did exhaustive searching

1 G← ∅
2 s∗ ← 0

3 while card(F ) > 2 do
4 for each Fi ∈ F do
5 Ti ← F \ {Fi}
6 si ← S(Ti)

7 end for each
8 ı̂← argmaxi si
9 F ← Ti

10 if sı̂ > s∗ then
11 s∗ ← sı̂
12 G← F

13 end if
14 end while

Figure 2.5: The sequential backwards elimination (SBE) feature selection algorithm [LM98, p. 48]. The
card(·) operator denotes the cardinality, i.e., the number of elements in a set.
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only through the subsets containing at most two features. The random subset sequential
backwards elimination search is an attempt to find high-performance combinations of more
than two features.

The ordinary sequential backwards elimination (SBE) algorithm is described in Fig-
ure 2.5 [LM98, p. 48]. The algorithm produces the winning set of features G and the
associated score s∗ from the initial set of features F . The algorithm uses the score func-
tion S(X) to compute a performance score for a feature set. Normally the initial feature
set F equals the set of all implemented features and the SBE algorithm returns the subset
containing only the relevant features.

The random subset sequential backwards elimination is a modification to the ordinary SBE.
Due to the large number of features it is not always possible to run SBE on the set of all
features. Instead, SBE is run for random equal-sized subsets of the full feature set. The
total set of features is partitioned into equal-size subsets, and ordinary SBE is performed
on each of the subsets. The results of each SBE run are compared and the winning feature
set is selected among them. This modification eases the computational requirements of the
algorithm while still allowing theoretically any combination of features to win.
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3 Previous models

This section contains a review of the most relevant previously published models on musical
meter and beat recognition. Most of the models do not attempt to recognize meter on other
levels than the beat. Such models are called beat trackers [AD90].

The extraction of two or more levels of metrical structure from an acoustic signal of music
has not been discussed per se in any previous literature. Furthermore, explicit estimation
of the tatum from a musical signal, given no prior information, has only been described
in [Sep01] before. On the other hand, several reports describe a system for doing metrical
analysis from MIDI or some other symbolic representation. Methods operating purely on
symbols are more developed and claim to extract various sorts of high-level information
from a symbolic input. At the same time the audio signal processing models struggle even
to find the beat robustly. There is an obvious dichotomy between the models that can
process acoustic signals and the models that cannot.

Of the models presented below, Lee, Parncutt, Rosenthal, Temperley–Sleator and Toivi-
ainen are the only actual meter models, i.e., models which observe more than just the beat.
The other models concentrate on finding the beat. The meter models mentioned above are
capable of producing the tatum as a by-product. In a related thesis, Bilmes discusses an al-
gorithm for creating a tatum grid that matches a score with a performance, given complete
metrical knowledge of the piece [Bil93a].

The most important differentiator of the published models is the fact whether they take
acoustic signals or a symbolic representation such as MIDI as input. Scheirer argues contro-
versially that pure symbolic note processing algorithms are only good for that one purpose,
i.e., for processing notes symbolically, and they should not be applied to real-world musical
signal analysis [Sch00]. I am inclined to agree, since very few symbolic algorithms have
been successfully applied to real-world signal analysis, according to the literature. Dixon
makes an exception by proposing a symbolic MIDI beat tracker that can also be applied to
signal analysis [Dix01a]. However, there is a fine line between signal-processing and sym-
bolic systems because beats are symbols. Since every (acoustic) beat tracker is an explicit
signal-to-symbolic transform, there is not much sense in differentiating ‘mostly symbolic’
systems from ‘mostly signal processing’ systems.

Another important property of especially the beat tracking models is causality, that is,
whether the model requires looking at input beyond current output point, in anticipation,
or whether it does not. Humans always listen to music in real time, and therefore models
that ‘look into the future’ are not actually prospective models of music perception. Conse-
quently, the primary goal of beat and meter recognition models is to perform equally well
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as humans, in real time.6 Only after this are noncausal extensions justified. The published
models can be divided according to these properties as

1. causal (non-anticipating) models processing acoustic audio signals: Goto–
Muraoka [GM98], Scheirer [Sch98b];

2. noncausal models processing audio signals: Dixon [Dix01a], Foote–Uchihashi [FU01],
Laroche [Lar01], Muscle Fish [WBKW96], Sethares–Staley [SS01], Tzanetakis–Essl–
Cook [TEC01]; and

3. models processing symbolic data: Allen–Dannenberg [AD90], Brown [Bro93],
Cemgil–Kappen–Desain–Honing [CKDH01], Eck [Eck01], Large–Kolen [LK94],
Lee [Lee91], Parncutt [Par94], Povel–Essens [PE85], Raphael [Rap01], Rosen-
thal [Ros92], Smith [Smi99], Temperley–Sleator [TS99], and Toiviainen [Toi97].

Above, I have not divided the non-acoustic models according to causality, due to the fact
that the publications do not usually consider causality at all. Most of the symbolic models
require access to the whole score of a piece of music, and would thus classify as noncausal.

I will now briefly summarize each of the above models. Due to the number of models, they
are presented in five qualitative categories:

1. rule-based search models,
2. multiple-agent models,
3. multiple-oscillator models,
4. procedural models, and
5. probabilistic models.

It should be noted that this categorization is ambiguous to a certain degree; especially the
rule-based search and multiple-agent model categories overlap.

3.1 Rule-based search models

The modeling of rhythm and meter perception started with rule-driven models capable of
processing simple notated monophonic melodies and rhythm patterns. The modeling was
done in parallel with the research on defining the structure of rhythm. Rhythmic experi-
ments served both the modeling work and the rhythm structure research.

Povel and Essens proposed one of the first computational models of rhythm perception.
They describe a symbolic algorithm which processes periodic rhythmic onset sequences,
assigning accents to onsets and finding the period and phase of an isochronous pulse that

6It is hypothesized that humans would alter earlier percepts in retrospect, based on later input. In effect,

this would have to be simulated noncausally, but only within the span of the perceptual present of approxi-

mately 4 seconds [Par94].
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has the least counterevidence in the form of coinciding with non-accentuated onsets or with
no onsets at all. The assignment of accents and the computation of counterevidence are
guided by simple heuristic rules. [PE85]

The Lee model. A rule-based model that concludes the work of Longuet-Higgins and
Lee is published in [Lee91]. Lee’s symbolic model also handles counterevidence against
different pulse hypotheses and works out the ‘least-unexpected’ pulses from onset timings.
The model is sophisticated in that it attempts to recognize the metrical structure on more
than one level. Akin to Povel and Essens [PE85], Lee sets forth heuristic rules that drive
the model. [Lee91]

Parncutt brings two important features to his symbolic model in comparison to the previ-
ous models: phenomenal accents and the preference for moderate tempo. Parncutt defines
a phenomenal accent measure as the sum of terms measuring durational accent, loudness
accent, pitch accent and possible interactions of these. In his model, however, he only uses
and concretizes durational accent. He presents a model with a direct relationship between
inter-onset intervals, durational accents, moderate tempo, and the perceived beat. In ad-
dition to the beat, Parncutt’s model also estimates perceived meter, metrical accents, and
expressive timing information. [Par94]

The Temperley–Sleator model. Recently, Temperley and Sleator published a hybrid har-
mony/meter recognition model that is also based on the rule-based search concept. The au-
thors enumerate a set of rules which, for the meter part, draw heavily on Lerdahl and Jack-
endoff [LJ83]. Similarly to the heuristics of the other models, the rules specify e.g. that
beats should be spaced regularly, beats should align with onsets, and strong beats should
align with onsets of longer events. A score value is computed as a function of time, based
on the fulfillment of the above rules, and the meter is recognized from the scores with
the Viterbi algorithm. The Temperley–Sleator model is one of the models that produce a
metrical grid with several levels. The model operates on symbols. [TS99]

Laroche proposes a beat tracking model for working with acoustic signals with a constant
tempo. Furthermore, he assumes that every beat is divided into four tatums and that the
second and fourth tatums may be delayed by an equal amount, corresponding to a type
of rhythm known as swing or shuffle. The onset detector is similar to that of Scheirer’s
or Sethares’s and Staley’s, alhough Laroche does not reveal the number of bands he uses.
The actual beat tracking model expresses the likelihood of onset locations with a four-
component Gaussian mixture, where each component is centered at each tatum and finds
the maximum likelihood parameters by exhaustive search. [Lar01]
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3.2 Multiple-agent models

The multiple-agent beat and meter recognition models all operate according to the same
principle. A number of differing hypotheses about pulse period and phase are made and
a salience value is iteratively computed for each hypothesis. Each hypothesis is called an
agent. In the course of tracking, hypotheses can be pruned or split, resulting in fewer or
more agents after that point. Hypothesis salience is increased whenever an onset coincides
with a pulse belonging to the hypothesis. More sophisticated models estimate the accen-
tuation of notes and incorporate that into hypothesis salience computation. In the end, the
most salient hypothesis is considered to represent the correct meter. One peculiarity of the
multiple agent framework is the need for initialization; at startup, a sufficient number of
potential hypotheses needs to be constructed. Different literature suggest different means
for initializing the set of hypotheses.

Allen and Dannenberg were perhaps the first to construct a multiple-agent beat tracking
model. Allen and Dannenberg lay a set of heuristic rules that penalize e.g. beats that
have a short note or no note at all, and then use beam search to find the most salient beat
transcription. The algorithm is not completely autonomous because it needs to be given the
initial downbeat to start the search with, i.e., the initialization of hypotheses is the user’s
responsibility. The model processes MIDI. [AD90]

Rosenthal formulated a complete symbolic meter analysis system for polyphonic music
in his Ph.D. thesis. The model attempts auditory streaming by labeling incoming notes to
melody and chords, which then constitute the input to meter recognition. At startup, the
model considers the beginning of the musical piece and attempts to find the beat from that.
This is accomplished by (1) computing an IOI histogram from the onsets in the beginning,
(2) performing a harmonic transform to it,7 (3) convolving the result with a Gaussian func-
tion, (4) weighting with an a priori tempo distribution, and finally, (5) by selecting the
period corresponding to the maximum of the resulting function as the beat period. The beat
and its subdivisions and multiples are then used to construct the initial hypotheses prior to
beam search through the piece. During the search, accentuation consisting of duration and
the existence and number of nearby onsets is attributed to onset events. [Ros92]

Goto and Muraoka have a series of publications on beat tracking, and their latest model is
best summarized in [GM98]. Their model operates on acoustic music signals by performing
onset detection from the spectrogram of the incoming signal. Onset detection is performed
independently on multiple frequency bands and the authors assign agents to operate strictly
on the onsets coming from a specific frequency band. Each frequency band feeds multi-
ple agents to facilitate multiple different meter hypotheses. The agents compute an IOI
histogram and determine the beat period based on that. Moreover, bass and snare drum

7Harmonic transform of a histogram p(x) is defined by ph(x) =
∑

i wip(ix), which reinforces the re-

sponse at x by the responses at integral multiples of x according to weights w i. In [Ros92], ∀ i > 3 : wi = 0.
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onsets are separated from the music and they are used as additional clues in beat detection.
Detected bass and snare drum timing patterns are compared to internal rhythmic patterns
to distinguish strong and weak beats. The publication does not reveal how hypotheses are
initialized in the model. [GM98]

Dixon has presented a noncausal multiple-agent beat tracking algorithm. Dixon’s model
is capable of processing acoustic musical signals in addition to symbolic data. At first, the
systems performs a coarse sound onset detection to the audio signal by applying a high-pass
filter, full-wave rectifier and a moving average filter in cascade, and then picking peaks from
the resulting power signal. Inter-onset intervals (IOI) are clustered into a histogram-alike
“class” representation, where each IOI belongs to one class and the populations of IOI’s
in each class are computed. The beat period hypotheses are initialized as in Rosenthal’s
method. The actual beat positions are found by an iterative search through the onsets.
A worthwhile remark of the model is that it in no way takes explicit advantage of any
acoustic (phenomenal) accent information.8 [Dix01a]

3.3 Multiple-oscillator models

An oscillator is a concrete parametric model of pulse generation, and therefore it would
seem natural to simulate pulse reception with a phase-locking oscillator. This has indeed
been pursued in a number of publications, each concentrating on a different problem do-
main, oscillator type or oscillator network formulation. Multiple copies of the basic oscilla-
tor are used in the models to account for different meter hypotheses; a single basic oscillator
only responds at a characteristic frequency range.

The oscillators need to be stimulated with a train of impulses or some other sort of impulsive
excitation. If the period of the excitation matches the characteristic frequency of a given
oscillator, the oscillator will start to converge towards oscillating in unison with the excita-
tion. Thus, a bank of oscillators is constructed, consisting of several oscillator units with
nonoverlapping frequency ranges, together spanning a rhythmic frequency range. Then,
during meter recognition, the degree of resonance of each oscillator is observed, and the
output of the strongest-resonating oscillator is chosen as the recognized pulse.

The Large–Kolen model is one of the first models to use oscillator units for representing
meter perception. The authors describe a nonlinear oscillator unit that, when stimulated
with a pulse train within its characteristic frequency range, responds with synchronized
pulsation. When the oscillators are arranged into a bank of six oscillators in parallel and
fed an identical pulse train, some of the oscillators synchronize with different metrical levels
of the input, while others fail to synchronize at all. The model is symbolic. [LK94]

8Dixon remarks that the simplistic onset detector can be regarded as a filter of non-accentuated events.
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Toiviainen has developed an oscillator bank for the recognition of meter [Toi97] and ap-
plied it to automatic accompaniment of piano playing [Toi98]. The nonlinear oscillators are
similar to those of Large and Kolen. The model consists of two oscillator banks, the first
for beat tracking and the second for tracking the next-highest metrical level. The output of
each oscillator in the first bank is connected to a pool of oscillators in the second bank. The
resonant frequencies of the second bank are tuned to two and three times that of the first
oscillator, to facilitate for binary and ternary meters. The model consumes MIDI. [Toi97]

The Scheirer model. The algorithm proposed by Scheirer is a causal, or non-anticipating,
signal processing model of beat tracking from an acoustic input signal. The model is rooted
in a subband front-end inspection of the musical signal, aiming to produce a perceptually
relevant amplitude envelope representation at each frequency band. The beat tracking is
carried out with an independent oscillator bank on each subband, and the final beat tracking
result is combined based on the energies of the subband oscillators. Each subband oscil-
lator bank contains oscillators with identical characteristic frequencies, and the energies of
identical oscillators are summed across bands. Scheirer introduced the idea of using comb
filters as oscillator units, with the benefit that a comb filter oscillator will resonate at integral
multiples of its characteristic frequency. Thus an oscillator will start to follow rhythms that
correspond to its characteristic metrical level and all sublevels of it. [Sch98b] [Sch00]

Eck has built a symbolic model from neurologically motivated oscillator units called
Fitzhugh–Nagumo relaxation oscillators. The type of oscillator was originally designed
to model the dynamics of neural action potential. Eck builds a network of 20 oscillators,
where every oscillator is coupled with all the other oscillators through a specific coupling
function. This model is clearly the most complex of the multiple-oscillator models. [Eck01]

3.4 Procedural models

The procedural models can not be characterized with a common property, they are only
similar in that they can be described only through the procedure they follow. In most of the
cases this means the application of a standard signal processing method to beat tracking.

Brown describes the use of autocorrelation for simple metrical analysis. Her work is
based on finding the inherent pulsation of an onset stream by finding a lag for which the
autocorrelation is high. The onset stream is represented as an (irregular) pulse train. [Bro93]

The Muscle Fish content-based audio retrieval system features a simple beat tracking
subsystem based on a “bass loudness time series” analysis. They perform the FFT on the
amplitude envelope of low-pass filtered acoustic music signal and pick the FFT frequency
bin with the most energy. Consequently, the system cannot infer anything from high-pass
signals. [WBKW96] [BKWW99]
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Smith proposes the application of the wavelet transform for beat tracking. In a similar way
as Brown, he first constructs a pulse train signal from a list of symbolic onset times. The
pulse train signal is then decomposed with the Morlet continuous wavelet transform into
a time-frequency representation. Subsequent processing in the time-frequency domain is
then performed to reveal the beat. [Smi99]

Foote and Uchihashi have applied an audio self-similarity concept for beat tracking. The
algorithm consists of extracting spectral features from the audio signal, computing a sim-
ilarity metric between all pairs of feature vectors, and finally taking an autocorrelation of
the similarity data. The beat period is the lag of the highest autocorrelation peak. Due to
the computation of the autocorrelation over the entire audio sample, the algorithm is not
causal. The most important contribution of this article is the proposition to use a similarity
metric between two points in the audio signal to determine the beat period, rather than to
establish the accentuation in a single point. The other reviewed audio processing models
rely on trying to measure the phenomenal accent of a single point in the signal, i.e., whether
a single point is a beat in itself or not. [FU01]

Tzanetakis, Essl, and Cook have developed an acoustic beat tracking subsystem to a mu-
sical genre recognition system. The beat tracker has a four-band preprocessing stage con-
sisting of octave-band wavelet analysis, rectification, low-pass filtering, decimation, nor-
malization, and summation across bands. Beats are computed from this excitation signal
with autocorrelation, in a noncausal fashion. [TEC01]

The Sethares–Staley model uses the periodicity transform for beat tracking. The model is
suited to processing of acoustic music signals through the pre-processor, which in practice
is very much alike the front end of Scheirer’s model. The incoming signal is transformed
to frequency domain with the FFT, parted into 23 frequency bands, whose RMS amplitude
envelopes are then computed. Next, the amplitude envelope of each band is transformed to
periodicity domain with the novel periodicity transform, in which the highest value is then
selected. [SS01]

3.5 Probabilistic models

Probabilistic models do not share a similar structure but a similar modeling approach. The
view behind probabilistic models is that onset times and other acoustic phenomena are
actually random by nature, and the observations are contaminated with uncertainty. Proba-
bilistic models attempt to tackle the uncertainty by including it in the model. The proposed
model also attempts to leverage probabilistic methods in its processing.

The Cemgil–Kappen–Desain–Honing model. The recent approach to beat tracking by
Cemgil et al. draws from the body of statistical modeling research and from the theory
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of linear dynamical systems in particular. It has been previously assumed that the timing
deviations in piano playing obey the Gaussian probability distribution [Sch95, p. 45], but
virtually no usage has been made of this prior to this model. Cemgil et al. estimate the
beat trajectory by applying a Kalman filter to the output of a local periodicity data they call
the tempogram. The Kalman filter optimizes the parameters of a linear dynamical system,
where the beat position and the logarithm of beat period are hidden variables [GH96]. As a
result, estimates of beat positions are produced. The tempogram periodicity data represents
energy as a function of period in a local timeframe. The function resembles an IOI his-
togram with memory but tolerates deviations in onset times in a configurable amount. The
model processes MIDI data. [CKDH01]

Raphael constructs a Bayesian belief network for simultaneous tracking of beats and quan-
tization of notes from a symbolic onset stream. His method requires that the possible posi-
tions of onsets within a measure are known a priori. Once this is known, the belief network
models the relationship of the discrete measure positions to a continuous tempo function
and further to the continuous observed onset times. The tempo and onset quantization re-
sults are then given by maximum a posteriori (MAP) estimation. [Rap01]

3.6 Commercial systems

This section contains a brief summary of the advertised features and the actual performance
of a sample of the currently available commercial solutions for beat tracking. Currently, no
commercial solutions exist for meter recognition.

Native Instruments Traktor software. This program performs real-time beat tracking
from acoustic input. The incorporated model would seem to respond only to low-frequency
content and thus I believe it to be similar to the Muscle Fish “bass loudness time series
analysis” procedural approach. [Ins01]

Sonic Foundry Acid Pro 3 software. This software carries out a noncausal analysis of an
acoustic audio signal. In the course of the analysis, the user is asked to verify the decisions
made by the algorithm. Based on user feedback, the software attempts to position the beats
and the measures. The approach taken seems to be a heuristic search, in which a regular
grid is matched which the transients in the input signal. [Fou01]

DJ hardware. Several pieces of hardware possess a tempo recognition feature. According
to my experience, they however unanimously respond only to low-frequency content. The
bass loudness time series analysis behaves similarly in this respect, which would imply that
a simplified variant of it would be used.

E-mu sampler hardware. The latest sampler models of E-mu incorporate a version of the
Laroche beat tracker. The main operation of the model is summarized above. [Sys99]
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4 Proposed model

This section proposes a system for recognizing metrical information from acoustic musical
signals. The meter is analyzed on the beat, or “tactus” level, on the tatum level, and the
subordinate levels in between. Figure 4.1 illustrates the structure of the meter recognition
model. The most important blocks in the system are

1. Sound onset detection,
2. Tatum grid estimation,
3. Phenomenal accent model, and
4. Beat grid estimation,

and data flows through the blocks primarily in this order. Ground grid and subordinate grid
estimation are secondary functions carried out beside the main operation.

Here, a distinction between signals and symbols is made. In Figure 4.1, there are both sig-
nal and symbol connections between processing blocks; signal connections are drawn with
solid lines and symbol connections with dash-dotted lines. In my work I consider signals
to be synchronously and symbols to be asynchronously handled data. Synchronous con-
nection means that data transfer is done according to a regular clock, while asynchronous
transfer takes place in irregular events or messages not controlled by a clock. I take this
to be the definitive difference between signals and symbols; for example, an amplitude en-
velope computed every 10 ms is a signal, while an ADSR (attack–decay–sustain–release)
amplitude envelope consists of four symbols together with their timing.

Sound onset
detection

Tatum grid
estimation

Phenomenal
accent model

Beat grid
estimation

Subordinate
grid estimation

Input
signal

Ground grid
estimation

Tatums

Subordinate
pulses

Beats

Figure 4.1: The meter recognition model. Solid lines denote audio signals and dash-dot lines symbolic data.
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Prior to metrical analysis, the audio signal is preprocessed with a sound onset detector.
The onset detector tracks changes in the root-mean-square (RMS) amplitude envelope on
multiple frequency bands and emits onset events at points of rapid level increase. The
onset detector transforms the audio signal into a symbolic representation consisting of onset
times, amplitudes, spectral location, etc.

Next, the tatum estimator processes the stream of onsets causally, enabling the tracking
of accelerandos and ritardandos by using an exponentially decaying window for past data.
Rubatos and tempo changes are detected after a latency time dictated by the observation
window length. The tatum estimator outputs the tatum pulse, which enables synchroniza-
tion to the stream of onsets and thus to the audio signal itself. A stabilized version of the
tatum is produced by removing discontinuities from the tatum period. In this work, the
stabilized pulse is termed the metrical ground. It is then used internally in the model to
segment the audio signal.

Then, each element in the segmented audio signal is fed to the phenomenal accent model,
which measures psychoacoustic accentuation at that point in the signal. The model oper-
ates by computing acoustic features such as onset power, onset spectral shape, bass level
etc. from the signal and then projecting the feature values into an estimate of phenomenal
accentuation.

Finally, the beats are found based on the phenomenal accents and the ground-level pulse.
The beat estimator observes the stream of phenomenal accents for periodicities near
100 BPM. It is working causally, too, making the recognition of sudden tempo changes
possible. The beat estimator outputs a pulse on every beat. For completeness, the pulses on
subordinate metrical levels between the beat and the tatum are filled in. This can be done
based on knowledge of the tatum and the beat.

As concluded in Section 3, the only viable models of meter perception are causal. There-
fore, while this model attempts to mimic the behavior of human meter perception, it also
has to be causal. The process in Figure 4.1 is functioning continuously when music is being
analyzed, and the outputs track the input with a delay.

4.1 Sound onset detection

Reliable detection of real note and sound onsets from an acoustic waveform is a very chal-
lenging task. Sound onset detectors have been built for the purposes of automatic music
transcription [Sch85] [CJK+85] [Kla98], computational auditory scene analysis [BC94],
and of course musical meter analysis [Tod94] [GM98] [Smi99]. The task of precisely find-
ing sound onset points is akin to making a transcription of the piece of music, which still
in general remains an unsolved problem in the case of polyphonic music. It is also debated
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Figure 4.2: The onset detector. The blocks apart from the across-band combiner are identical for all eight
bands.

whether onset detection should even be attempted in the first place. Scheirer criticizes
the efforts to first encode information using notes within a musical analysis system and
then to process them using a high-level symbolic musical analyzer. He opposes symbolic
note data because of the limitations in onset detection, but more importantly because of
the implied proposition that human perception would be transcribing notes as we listen to
music [Sch00].

Yet sound onset detection becomes practicable if we loosen the requirements of finding ab-
solutely correct note onset data and instead concentrate on finding only the most obvious
note onsets. Such an onset detector would not fulfill the promise of an automatic music
transcription system, but here it provides the necessary amount of information for the sub-
sequent processing stages to find implied pulsations.

Figure 4.2 shows an overview of the onset detector. The incoming music signal is divided
into individual frequency bands with eight parallel band-pass filters (BPF). Then, on each
frequency band, raw onsets are detected simply by looking for rapid increases in the band-
wise amplitude envelope. For each detected raw onset, further data is computed on a single
frequency band. Finally, all the raw onsets together with accompanying data from all eight
bands are inspected together to combine simultaneously occurring raw onsets into one.

Previous onset detection algorithms are mostly based on first estimating the amplitude en-
velope of the audio signal and then thresholding the first-order difference of the amplitude
envelope to find onsets. In contrast to them, the raw onset detector described in Figure 4.3
gains an advantage by combining multiband analysis and the nonlinear difference func-
tion (xn − xn−1)/(xn + xn−1). This overall approach was originally proposed by Klapuri
in [Kla99].
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Figure 4.3: The detector of bandwise raw onsets. The processing is duplicated for all channels identically
except for the Delay block.

Table 4.1: Onset filterbank analysis filter passband frequencies, bandwidths, and compensation delays. The
delays are computed from mean filter passband group delays.

Number Passband Bandwidth (hertz) (octaves) Delay
1 50–106 Hz 55.9 Hz 1.08 0 ms
2 106–224 Hz 119 Hz 1.08 7.21 ms
3 224–476 Hz 251 Hz 1.08 10.6 ms
4 476–1010 Hz 532 Hz 1.08 12.1 ms
5 1010–2140 Hz 1130 Hz 1.08 12.9 ms
6 2140–4530 Hz 2390 Hz 1.08 13.2 ms
7 4530–9590 Hz 5060 Hz 1.08 13.4 ms
8 9590–20300 Hz 10700 Hz 1.08 13.5 ms

4.1.1 Filterbank analysis

Sound onsets are observed on eight non-overlapping frequency bands, distributed logarith-
mically from 50 Hz to 20 kHz. The number of frequency bands used has varied quite
much in the literature: some naïve approaches use a single bass band below approximately
100 Hz [WBKW96], while others use a single treble band above 1 kHz [Bil93b] [Dix01a],
Scheirer has used six [Sch98b], Klapuri 21 [Kla99], Sethares and Staley 23 [SS01], Cari-
ani 25 [Car01] and Smith as many as 28 non-overlapping bands [Smi96]. The number and
logarithmic positioning of the analysis filters in this work are motivated by psychoacous-
tics [ZF90] and auditory models [Sla93].

Filter linear phase response has been compromized in favor of more efficient computation
through the use of sixth-order Butterworth IIR (infinite impulse response) filters. For com-
parison, the gammatone filters in an auditory model are eight-order IIR filters [Sla93].
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Figure 4.4: Onset filterbank analysis filter responses. Odd-numbered filter responses are drawn with solid
curves, while even-numbered responses have dashed response curves.

The actual filter design parameters, consisting of filter cut-off frequencies, are listed in Ta-
ble 4.1. The table lists also filter passband bandwidths and required delay compensations,
computed from passband group delay means [OS89]. The additional delay in Figure 4.3
is necessary to compensate for the different group delays of the analysis filters. Without
compensation, the raw onsets of a single musical event would not coincide between bands.
All the eight analysis filters have a 13-semitone (1 and 1/12-octave) bandwidth, i.e., the
bandwidths in hertz are different between filters and grow exponentially from lower bands
towards upper bands. Filter amplitude responses are illustrated in Figure 4.4. The filter-
bank is called a constant-Q filterbank, since the filter bandwidths are proportional to filter
passband center frequencies. Therefore the input signal producing equal power output from
all filters is pink noise, i.e., noise with a 1/f power spectral density.

4.1.2 Channel amplitude envelope

As show in the diagram in Figure 4.2, the input signal is filtered in parallel with each of the
eight band-pass filters. On each band, this produces a subband signal s[n] — in this simpli-
fied notation the subband number is not explicitly written. After separating the frequency
bands, the root-mean-square (RMS) level of each subband signal s[n] is estimated using

r[n] =
√

g[n] ∗ (s[n]2), (14)

where g[n] is a third-order Butterworth IIR low-pass filter (LPF) cutting off at approxi-
mately 30 Hz. The RMS signal r[n] is a positive-valued signal which serves as a good
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estimate of the short-time power present on the band at each time. Because r[n] contains
very little energy above 50 Hz, it is decimated to a sample rate of 100 Hz to remove the
overhead from forthcoming computations. In the passband 0–30 Hz, the RMS low-pass
filter g[n] introduces a group delay of 8.3 ms ± 0.8 ms, and thus the phase response can be
said to be approximately linear for practical purposes.

Next, in simple imitation of the human auditory system, the amplitude envelope a[n] is
computed from the decimated RMS signal by convolving it with a 100 ms half of a raised
cosine (also termed von Hann and hanning) window. The motivation for this is that the
half-hanning window performs temporal integration like the auditory system and effectively
masks rapid amplitude modulation [Tod94]. This window has a deliberately nonlinear phase
response whereby low frequencies are significantly delayed (approximately 25 ms below
5 Hz) and higher frequencies are slightly advanced (about 13 ms around 14 Hz and about
5 ms above 20 Hz). From the two filters, the half-Hanning filter is more dominant on phase
response, while both the filters contribute to the amplitude response.

4.1.3 Amplitude envelope thresholding

An approximate formula for detecting noticeable sound onsets from the amplitude envelope
can be devised by starting from the Weber fraction ∆I/I , where ∆I is the just-noticeable
difference (JND) in sound intensity and I is the intensity of the reference sound [Kla99].
Since, by assumption, for wideband signals this fraction is constant, k = ∆I/I , we can
express the intensity JND as a function of reference intensity ∆I = kI [AN97]. While
doing raw onset detection, we observe the change of sound intensity between one time
instant, I[n − 1], and the next, I[n], and we wish to compare the change in intensity with
the intensity JND,

I[n]− I[n− 1] ≥ kI[n− 1] ⇐⇒ I[n]− I[n− 1]
I[n− 1] ≥ k. (15)

Given that sound intensity is proportional to power, I ∝ a2 [AN97], we get
a[n]2 − a[n− 1]2

a[n− 1]2 =
a[n]− a[n− 1]

a[n− 1]
a[n] + a[n− 1]

a[n− 1]︸ ︷︷ ︸
≈2

≥ k. (16)

In practice, it turns out that the second factor in Equation (16) can be well replaced with a
constant of two without causing any significant change in the value of the function. In effect
this implies that the time step is small enough to make the change in intensity very little,
I[n− 1] ≈ I[n]. This yields

a[n]− a[n− 1]
a[n− 1] ≥ k

2
, (17)

and by estimating the denominator with the mean of a[n − 1] and a[n] we get a slight
increase in robustness, yielding

b[n] =
a[n]− a[n− 1]
a[n] + a[n− 1] ≥

k

4
≈ 0.06, (18)
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where k = ∆I/I = 10−6/10 for wideband noise according to Plack and Carlyon [PC95,
pp. 134–135].

Therefore, the detection of raw sound onsets from the amplitude envelope a[n] is done by
comparing the relative difference b[n] to the constant (upper) threshold 0.06. The point
where this threshold is exceeded is called the raw onset rise point. Starting from the rise
point, the increase in the amplitude envelope is attributed to a single raw onset up to the raw
onset fall point where either (a) b[n] descends below a constant lower threshold,−0.035, or
(b) 300 ms have passed. After this, the detection starts again, and b[n] is compared to the
upper threshold for a new onset.

Raw onset amplitude ao is computed from the amplitude envelope during the attack of the
sound, ao = a[nf ] − a[ni], nf > ni. The sound attack initial amplitude, a[ni], is taken
from the first local minimum backwards from the onset rise point. The sound attack final
amplitude a[nf ] is the maximum amplitude encountered between the raw onset rise and fall
points. Raw onset attack duration toa is computed from the initial and final attack point
times, toa = (nf − ni)/100 Hz.

4.1.4 Rough sound duration estimation

Raw sound duration is approximated by the within-band distance from one onset to the next
loud enough onset, which is called the registral inter-onset interval (registral IOI) [TS99].
As discussed below, this does not equal sound duration, and sounds may well be both
shorter or longer than registral IOI’s. However, given the fact that obtaining accurate infor-
mation on sound duration is very hard, the registral IOI provides a good guess of it.

For a raw onset at time t0, I define the registral IOI measure d > 0 with the equation∫ t0+d

t0

∑
i

aif(t− ti) dt = 1, where (19)

f(t) =

{
1

0.99
pe−pt if t ≥ 0

0 otherwise.

Here {t0, t1, t2, . . .} are the times and {a0, a1, a2, . . .} are the amplitudes of raw onsets on
a single frequency band. The parameter p = −(ln 0.01)/dmax controls the compactness of
the onset response according to the upper registral IOI limit dmax. Integrating Equation (19)
yields the implementable formula∑

i

aig(d− ti) = 1, where (20)

g(t) =

{
1

0.99
(1− e−pt) if t ≥ 0

0 otherwise.

Equation (20) incorporates a model of sound duration, according to which a sound is con-
sidered to continue sounding only up to a following onset with an amplitude equal to (or

31



greater than) the amplitude of the previous sound. All following onsets that are distinctly
quieter than the sound under observation do not affect the duration much. Nevertheless, if a
sufficient-amplitude onset does not follow the given onset, IOI values are bounded to dmax

from upwards.

4.1.5 Combining bandwise raw onsets

After detecting raw onsets independently on each frequency band, the final set of onsets is
produced from the raw subband onsets, excluding distinctly low-amplitude onsets. The raw
onsets whose amplitudes are below the 10th percentile (0.1th quantile) of all amplitudes are
discarded.

Onset aggregation is done based on a minimum allowed inter-onset distance of 60 ms,
which is an estimate of the minimum discriminable IOI [Par94]. All raw onsets within the
60 ms range are combined into a single genuine onset, whose time is the median of the
times of the raw onsets; median is used instead of mean in order to suppress the effect of
outliers. Raw onset amplitudes combine with summation. The attack time of the combined
onset equals the mean of the attack times of the corresponding raw onsets and the aggregate
registral IOI equals the maximum of the raw onsets’ registral IOI’s.

4.2 Tatum grid estimation

The aim of tatum period estimation is to estimate the average interval between successive
pulses on the lowest metrical level. This will be denoted q. The tatum period q is estimated
causally, from incoming onsets one at a time, resulting in a time-varying estimate of it.9

The only information used to determine the tatum period are the times of the onsets, dis-
carding all information of the pitch, timbre and loudness of the musical signal. Preliminary
experiments indicate that incorporating loudness or any other auxillary information into the
tatum estimation process will more likely produce a false tatum. This observation seems
rather logical, considering the fact that the loudness or timbre of onsets tend to correlate
more strongly at the beat level than at lower metrical levels [LJ83].

4.2.1 Inter-onset interval computation

The onset stream is first transformed into inter-onset interval (IOI) data. Given two onsets
at times ta and tb, ta < tb, the IOI between the onsets is defined as o = tb − ta. The IOI’s
are not only computed between pairs of successive onsets; rather, all onset pairs whose

9Most of the contents in this section has been published also as a separate paper [Sep01].
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Figure 4.5: Accumulated IOI histograms (h1) and (h2) and REF’s (e1) and (e2) of the example signals after
10 seconds of processing. The signals are excerpts from (1) “Da Sambafrique” by Nick Holder (instrumental
house music) and (2) “Segue o Seco” by Marisa Monte (live performance of brazilian pop music). Detected
tatums are 120 ms and 181 ms, respectively.

IOI’s are within an upper limit are taken into account. This procedure (also used by Rosen-
thal [Ros92] and Dixon [Dix01a]) is a variation of the conventional notion of the IOI.10

4.2.2 Greatest common divisor approximation

If we assume that there are no random deviations in the IOI values, the IOI’s are all exact
integral multiples of the tatum, implying that the tatum is equal to the greatest common
divisor (GCD) of the IOI’s. I now introduce a scheme to estimate the GCD in a situation
where the IOI’s contain random deviations.

Let us define a remainder error function (REF), as a function of period p and inter-onset
intervals oi:

e(p) =
n∑

i=1

(
oi
p
−
⌊
oi
p
+
1

2

⌋)2

. (21)

The local minima of Equation (21) represent possible tatum candidates. If an exact
GCD exists, it can be found by finding the greatest value for which the REF is zero, or
gcd(o1, o2, . . . , on) = max {p | e(p) = 0}.

4.2.3 Inter-onset interval histogram

In order for the algorithm to accommodate tatum changes (e.g. accelerandos and ritardan-
dos), the IOI’s are converted into a time-varying histogram representation, accumulated
from onset to onset. Figure 4.5 illustrates example histograms of two music samples.

10The conventional IOI is the time difference between successive notes in monophonic melodies and

rhythm patterns.
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Let h[k], 0 ≤ k ≤M−1, represent the contents of the M-bin IOI histogram. The histogram
is constructed by counting the population of IOI’s oi discretized with a step size of r. This
contribution of the IOI’s for every new onset are gathered to a histogram fill function f [k] =

card ({i | (|oi − hx[k]| ≤ r)}), where hx[k] = kr are the histogram bin centers and card(·)
denotes the cardinality, i.e., the number of elements in a set.

After discretization, the updated histogram h′[k] is computed by adding the fill function
f [k] to the past histogram h[k] to implement a leaky integrator,

h′[k] = clh[k] + cff [k], (22)

where the leak and fill coefficients are cl = 0.5tu/t1/2 and cf = (ln 2)/t1/2, where tu is
the time since last histogram update and t1/2 is the histogram content decay time constant.
The coefficients cf and cl are variable, depending from tu, because the update rate is not
constant but dependent on onset rate. Using this weighting, the histogram represents the
weighted average of the past IOI rate in terms of the average number of IOI’s per second.

The remainder error function (21) can be re-formulated for use with the IOI histogram and
normalized,

ê(p) =

M−1∑
k=0

h[k]

(
hx[k]

p
−
⌊
hx[k]

p
+
1

2

⌋)2/M−1∑
k=0

h[k]. (23)

The histograms and remainder error functions computed with Equation (23) are illustrated
in Figure 4.5.

4.2.4 Remainder error thresholding

After the computation of the remainder error function ê(p), the tatum period must be cho-
sen. According to the definition of the GCD, the tatum is the highest local minimum of
the remainder error function. A parametrized threshold value eth = αminp ê(p) + (1 −
α)medianp ê(p) is used to select the tatum q as the most prominent local minimum be-
low the threshold. Here α = 0.4. Figures 4.5(e1) and 4.5(e2) show both the medians
(dash-dot line) and the thresholds (dashed line) in addition to the remainder error functions
(solid line).

4.2.5 Tatum phase estimation

The exact points of the tatum grid are positioned only after the tatum period has been
computed, adapting the grid towards the actual onsets, since by assumption, all the observed
onsets are on average aligned with the tatum grid [LJ83]. In the following, the position of
an individual tatum grid point is indicated by ϕ.
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Figure 4.6: The tatum period (solid) and the ground period (dashed) as a function of time. The excerpt is
a 15-second solo guitar sample from “Under the Bridge” by Red Hot Chili Peppers.

Given N onsets ti between two tatum grid points ti ∈ [ϕ, ϕ+ q], the average deviation δ of
the onsets is given by the circular mean

δ =
q

2π
\

(
1

N

N∑
i=1

ej2π(ti−ϕ)/q

)
, (24)

where the angle operator \(·) gives the phase angle, within [−π, π), of its complex argu-
ment. After the average deviation between the onsets and the grid is known, the position
of the next grid point ϕ′ is corrected to make the deviation smaller, parametrized with a
constant coefficient β = 0.1: ϕ′ = ϕ+ q + βδ.

4.2.6 Metrical ground estimation

The metrical ground is an artificial metrical level fabricated from the tatum. The metrical
ground is simply a cure to the problem of the tatum period exhibiting discontinuities and
hopping from one metrical level to another. For example, the meter of a piece may change
in a way that the tatum period changes from being half the beat period to being a fourth.
Because of this difference the tatum grid cannot be used as a basis for comparing e.g.
metrical distances before and after the change.

In addition to real changes in meter, the tatum period often contains spurious jumps to
periods in an integral relation. For example, in Figure 4.6, the tatum period oscillates
between 110 ms and 220 ms. These period changes are not necessarily errors, since the
signal is a demanding passage with solo electronic guitar playing.

The metrical ground grid is constructed by unwrapping the tatum period into a sublevel of
it near to 120 ms period. Every time there is a discontinuity in tatum period, the ratio of
tatum period to ground period is updated so that the ground grid stays continuous by force.
In the beginning of Figure 4.6, the tatum is 195 ms and the sublevel nearest to 120 ms is
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195/2 ≈ 98 ms. Later, when the tatum period has a discontinuity, the ground period keeps
on the same level.

4.3 Phenomenal accent estimation

In order to build a metrical hierarchy on top of the tatum grid, there has to be a way to
differentiate between individual tatums. As laid out in Section 2.3, the pulse positions on
all higher metrical levels are drawn from the set of pulse positions on the lowest level. This
means that it cannot be determined solely from the tatum grid whether a given grid point
is a beat or not, although all of the beats coincide exactly with a subset of the tatum grid
points.

Tatum pulse positions are inspected and differentiated in a supervised pattern recognition
framework. In this framework, the acoustic signal in the neighborhood of each tatum grid
point is inspected and characterized using a set of relevant features. These features are then
used as input to a statistical model together with the “ground truth” information of whether
a single tatum is also a beat or not. The statistical model is supposed to learn the classes
based on the pure acoustic signal features.

Such a bottom-up model for recognizing beats cannot achieve a very high percentage of
discriminating beats from offbeats because the model in no way takes into account the
temporal regularity of beats. This bottom-up beat recognition model is therefore meant
only as a model of the phenomenal accentuation, i.e., objective acoustic evidence of a
beat at a given observation point in music. The model attempts to incorporate most of the
properties of phenomenal accents, including

• sound onset times,
• sound durations,
• local emphasis of loudness or timbre, and
• other sudden changes in loudness or timbre,

as given in Section 2.3. The aim of the phenomenal accent model is to produce a single
normalized value representing the total phenomenal accentuation at the observation point.

4.3.1 Music corpus processing

In general, one needs loads of diverse and annotated data to carry out any kind of statistical
analysis. In beat recognition, this means having a lot of songs with annotated beat posi-
tions. The corpus collected in this work contains 330 musical signal excerpts; the beat in
each signal excerpt was manually annotated. The song names and other data are listed in
Appendix A.
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Table 4.2: Corpus statistics broken down according to genre. Number of songs, frequencies of offbeats and
beats, median tempi and average tempo deviations are reported.

Nr. Name Songs (%) Offbeats : Beats Tempo Deviation

1 Classical 79 (24%) 0.813 : 0.187 101 BPM 31 BPM
2 Electronic/Dance 24 (7.3%) 0.749 : 0.251 136 BPM 13 BPM
3 Hip Hop/Rap 12 (3.6%) 0.851 : 0.149 87.8 BPM 5.1 BPM
4 Jazz/Blues 54 (16%) 0.815 : 0.185 103 BPM 23 BPM
5 Rock/Pop 101 (31%) 0.798 : 0.202 113 BPM 23 BPM
6 Soul/R&B/Funk 39 (12%) 0.839 : 0.161 92.7 BPM 20 BPM
7 World/Folk 21 (6.4%) 0.818 : 0.182 102 BPM 24 BPM

All 330 (100%) 0.809 : 0.191 106 BPM 26 BPM

As a first step of signal analysis, the metrical ground grid is computed, based on the tatum
grid. The metrical ground grid provides a stable and musically-relevant temporal basis for
statistical classification. Each metrical ground grid point is a sample. Each sample belongs
to either the beat class or the offbeat class, depending on whether the grid point is nearer to
an annotated beat position than any other grid point.

The whole corpus of 330 song excerpts contains 175378 grid points in total, of which
141892 (80.9%) belong to the offbeat class and 33486 (19.1%) to the beat class. Thus,
the mean interval between grid points is 18963 s / 175378 ≈ 108 ms. Each of the songs
was assigned to one of the following seven main genres: ‘classical’, ‘electronic/dance’,
‘hip hop/rap’, ‘jazz/blues’, ‘rock/pop’, ‘soul/R&B/funk’ and ‘world/folk’. Table 4.2 shows
the distribution of songs between genres, the offbeat and beat class frequencies, the median
tempi and the average tempo deviations (mean absolute deviation from median tempo). The
median tempo and tempo deviation clearly varies according to genre, with rap music being
the slowest and dance music the fastest, and classical music having the most and dance
music the least tempo variation.11

Figure 4.7 illustrates the histogram of deviations between the annotated beats and the cor-
responding metrical ground pulses. That is, the figure shows the errors between the manual
beat tapping and the machine-computated metrical ground pulse. The histogram seems
nicely balanced approximately around zero, which at the same time verifies the approxi-
mate correctness of the annotation and justifies the use of the metrical ground as a basis for
beat tracking. The mean absolute deviation equals 26.2 ms. In relation to the corpus mean
metrical ground grid pulse period of 108 ms, the mean absolute deviation seems bearable —
it would need a deviation of 54 ms, over twice the mean, to change the grid point assigned
to an annotated beat. Assuming that all the beats are found correctly at the metrical ground
positions nearest to the annotated beats, we can compute the beat score metric defined be-

11The tempo deviation estimate for hip hop/rap is obviously too small due to the inadequate number of

songs.
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Figure 4.7: Histogram (N=33486) of metrical ground pulse position deviations from annotated beat positions.

low in Section 5.1, yielding ρ = 78%; this is the highest score obtainable with the proposed
algorithm and this corpus.

4.3.2 Acoustic feature extraction

This section describes the computation of the 16 most important acoustic signal features.
The features described here belong to the best performing feature subset, and the rest of
the features are described in detail in Appendix B. The numbering of the features is also
listed in the appendix. The 16 features used in the phenomenal accent model are collected
in Table 4.5 on page 44. In selecting the features, a total of 83 features were tested. The
features can be categorized in three categories:

• 39 spectral features,
• 38 onset features, and
• 6 others.

Some of the features were based on known musicological properties of beats; e.g. onset
loudness, number of onsets, bass level and sound duration are speculated to correlate with
beats, and therefore features were aimed at measuring them. Some other features, such
as spectral and temporal centroids, mel-frequency cepstral coefficients, and zero-crossing
rate were taken from previous audio and speech processing literature. Publications on the
identification of musical instruments in general and percussion instruments in particular,
identification of musical style and other long-term properties, and content-based retrieval
of music were browsed for features. Rest of the features such as 2-D cepstral coefficients
or onset deviation from ground grid were simply invented as such or combined from those
above.

All the signal features represent the acoustic properties of the musical signal at a single
point in time, possibly taking the preceding trend into account. Throughout this work, the
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features are computed at all the tatum grid points, one tatum at a time. It is nevertheless
worth mentioning that this is not a requirement of the feature extraction process as such,
and some other time positions could be substituted.

The first 39 features, the spectral features, are based on a warped spectrogram of a segment
of signal. The musical signal is segmented between the metrical ground grid points in such
a way that the center of each segment is at a grid point and the segments do not overlap.
The total spectrogram and an onset spectrogram are computed based on the fast Fourier
transform (FFT) as described in Appendix B. The onset energy ratio feature (#6) is the
ratio of the energies of the onset spectrogram and the total spectrogram, while the onset
spectrum bandwidth feature (#9) is a measure of the concentration of onset spectrogram
energy on the frequency axis.

Mel-frequency cepstral coefficients are renowned timbre representation features in audio
and speech recognition [Kar99] [Foo97] [BKWW99] [EK00]. Cepstral features (#12–#27)
are computed by taking the discrete cosine transform (DCT) from the logarithm of a spec-
trum. Here, multiple different feature vectors are produced from cepstral coefficients e.g.
by varying the number of coefficients. The different cepstral feature vectors then inhibit dif-
ferent cepstral analysis precision. The reason for doing this is to allow the feature selection
procedure (see Section 2.4) to choose the most suitable level of analysis.

Spectral band energy ratios (BER; features #28–#39) are timbre descriptors, too. The band
energy ratios describe the amount of energy on a frequency band relative to the total energy
on all bands. A vector of BER’s thus describes the distribution of energy on different bands.
Here, multiple feature vectors with different numbers of bands are incorporated for the sake
of effective feature selection.

After spectral features, the next 38 features are composed of onset features. The onset fea-
tures are no more computed from the warped spectrogram but rather from the eight band-
wise amplitude envelopes and other ancillary data provided by the onset detector (see Sec-
tion 4.1). The first two onset features are the number of onsets (#40) and the number of
raw onsets (#41). These features equal the number of (raw) onsets nearest to the given grid
point, i.e., they are nonnegative integers. These features are motivated by Lerdahl’s and
Jackendoff’s observation of sound onsets falling to metrically strong positions more often
than not [LJ83].

Onset attack slope (#52) equals onset amplitude divided by attack time. It is a measure of
the sharpness of the sound onset, i.e., the higher the attack slope is, the more the sound
onset resembles a transient. The onset registral IOI, as computed by the onset detector (see
Section 4.1), is used as a basis for the next features. Registral IOI per tatum (#62) is com-
puted by dividing the registral IOI with the tatum period: it describes the number of tatums
within the registral IOI. Registral IOI deviation from tatum (#63) equals the remainder from
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the division of registral IOI and tatum period: it describes how closely the registral IOI is
to an integer multiple of the tatum.

Parncutt has devised a model for the contribution of note duration or inter-onset interval to
the phenomenal accent, which he calls the durational accent [Par94]. The durational accent
feature (#64, #66) is a function of the registral IOI and is precisely defined in Appendix B.
The onset band centroid and bandwidth features (#71, #72) are computed from the distri-
bution of raw onsets on different bands. The centroid describes the frequency around which
the onsets are centered and the bandwidth the concentration of onsets around the centroid.

The remaining six features are a collection of standard technical signal features, which
nevertheless do not apply so well to musical signal analysis. These features are described
in detail in Appendix B.

4.3.3 Accent recognition

Accent recognition is based on the assumption that beats correspond to accentuated notes.
With this in mind, the signal features were exercised by plugging them into the three differ-
ent statistical classifiers described in Section 2.4. This was to serve two ends:

1. find signal features for discriminating beats from offbeats by searching for the subset
of best-performing features accompanied with the best-performing classifier, and

2. derive a model for phenomenal accents by using the winning classifier with the winning
features.

Here I first describe the search for the winning combination of features and a classifier, and
in the next section I discuss using them to model accents.

Feature evaluation and selection was carried out to all the 83 features described in Ap-
pendix B. In feature evaluation, the given features are first extracted both from the training
set and the testing sample set. Then the given classifier is trained with the feature vec-
tors from the training set as described in Section 2.4. Finally the test set feature vectors
are classified and the number of correct classifications is counted. During the classifica-
tion, the prior probabilities given earlier in this section, P (ωo) = 0.809 for offbeats and
P (ωb) = 0.191 for beats, were used.

During the classification performance testing, it is vital that the classifier training sample
set and the testing sample set are mutually exclusive, which means that no sample is used
both as training and testing data. As an effort to follow this rule and still allow testing every
sample in the corpus, the following scheme was used during feature selection. First, the
corpus was partitioned into five equally big parts by random. Second, one of the five parts
was used as the testing sample set and the union of the four remaining parts as the training
sample set. The testing was repeated five times in total, each time testing and training with
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different parts. The division into five parts allows for a sufficiently large training set12 but
only requires training five times.

The standard and obvious way to measure feature performance is to compare the percentage
of correct classifications. However, the percentage is not a good measure here due to the
unusually high prior of the offbeat class (80.9%), which means that simply ‘classifying’
every sample to the offbeat class would yield 80.9% correct classifications. The best actual
classifiers also achieve about 80% correct classifications, and thus it is impossible to tell
a good classifier from a bad one based on the percentage. Therefore, feature performance
was measured with a discrimination score S defined as

S = P (ω̂ = ωo|ωo)
P (ωo)P (ω̂ = ωb|ωb)

P (ωb) · 100%, (25)

where ω̂ ∈ {ωo, ωb} is the class decided by the statistical classifier. P (ω̂ = ωo|ωo) and
P (ω̂ = ωb|ωb) are the probabilities of the classifier making the correct decision when given
an offbeat and a beat, respectively. These probabilities are approximated by the frequency
of correct decisions in the five testing sample sets,

P (ω̂ = ωi|ωi) =
P (ω̂ = ωi ∧ ωi)

P (ωi)
,
card({x ∈ ωi|ω̂(x) = ωi})

card(ωi)
. (26)

The best discrimination score achievable by guessing is reached by guessing each of the
classes with the respective prior probabilities, yielding Sguess = 0.8090.809 · 0.1910.191 ·
100% ≈ 61%.

Feature selection was done using the three strategies from Section 2.4: single best feature
search, best feature pair search, and random subset sequential backwards elimination. The
first two were performed for all three classifiers, while the random subset SBE search was
only performed in combination with the LDA classifier due to the extensive computational
requirements of the other classifiers in this test.

The results from the feature selection with the single best feature and best feature pair search
strategies are summarized in Tables 4.3 and 4.4. The tables report the five best-performing
features and feature pairs as well as the three best-performing features and feature pairs
from each of the three feature categories and the three best-performing features and feature
pairs for each of the three classifiers.

As for the single best feature performance, feature #43, the number of raw onsets on pairs
of onset detector frequency bands, is performing best. Of the spectral features, various
numbers of the 2-D cepstral coefficients seem to work best. This is probably due to the

12The training set contains about 4/5 · 175378 ≈ 140000 samples with this corpus, divided into

0.809 · 140000 ≈ 110000 offbeats and 0.191 · 140000 ≈ 27000 beats. Given N -dimensional feature vectors,

covariance matrix computation requires at least N(N − 1)/2 training samples. Even with 100-dimensional

features this means about 5000� 27000 samples per each class.
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Table 4.3: Single feature classification performance. The single best feature is at the top.

Rank Score Classifier Feature (category)
1 75.9% MVG #43 Pair-bandwise number of raw onsets (onset)
2 75.3% MVG #25 Six onset specgram 2-D cepstral coeffs (spectral)
3 74.9% LDA #25 Six onset specgram 2-D cepstral coeffs (spectral)
4 74.7% MVG #26 Twenty-one onset specgram 2-D cepstral coeffs

(spectral)
5 74.3% GMM #25 Six onset specgram 2-D cepstral coeffs (spectral)
6 74.2% MVG #42 Bandwise number of raw onsets (onset)
7 73.8% MVG #27 Forty-five onset specgram 2-D cepstral coeffs (spec-

tral)
8 73.6% MVG #70 Onset max bandwidth (onset)

11 73.1% LDA #18 Four onset temporal cepstral coeffs (spectral)
14 71.5% LDA #43 Pair-bandwise number of raw onsets (onset)
16 71.2% GMM #43 Pair-bandwise number of raw onsets (onset)
19 70.5% GMM #42 Bandwise number of raw onsets (onset)
37 67.3% MVG #82 Temporal sample centroid [ms] (other)
93 54.6% MVG #81 Crest factor (other)
97 53.0% MVG #83 Relative bass level (other)

power of the 2-D cepstrum in modeling both temporal and spectral properties in a single
vector. The features from the ‘other’ category do not perform well on their own.

One peculiarity of the single best feature search was the malfunction of the classifiers in
one-dimensional feature space. Therefore, the single feature classification results in Ta-
ble 4.3 are all multidimensional feature vectors; most of the one-dimensional features got a
score of 0%, regardless of the classifier.

The best pair of features has merely a little over one percentage unit of performance gain in
comparison to the best single feature. The best feature pairs are formed across the spectral
and onset feature categories. The best single feature #43 is often found also in the best
feature pairs, but the 2-D cepstral coefficients do not show any advantage anymore. The
‘other’ category features do not perform very well either.

The poor performance of the Gaussian mixture model (GMM) in comparison to the sin-
gle multivariate Gaussian (MVG) modeling is a surprise. In theory, a multivariate Gaussian
model is a special case of a GMM, in which only one component is used, and therefore hav-
ing more than one component should always provide better modeling performance. How-
ever, here it is not the case. One may speculate that the reason for poorer performance
lies in the implementation of the expectation-maximization (EM) iteration used for training
the GMM. In fact, I adjusted the parameters of the EM algorithm to attempt faster opera-
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Table 4.4: Feature pair classification performance. The best feature pair is at the top.

Rank Score Classifier Feature (category)
1 77.0% MVG #39 Twelve-band spectrum BER [dB] (spectral)

#41 Number of raw onsets (onset)
2 77.0% MVG #39 Twelve-band spectrum BER [dB] (spectral)

#73 Raw onset max bandwidth (onset)
3 76.9% MVG #43 Pair-bandwise number of raw onsets (onset)

#50 Onset attack duration per registral IOI (onset)
4 76.7% MVG #43 Pair-bandwise number of raw onsets (onset)

#53 Raw onset attack duration per registral IOI (onset)
5 76.7% MVG #38 Eight-band spectrum BER [dB] (spectral)

#73 Raw onset max bandwidth (onset)
8 76.6% LDA #52 Raw onset attack slope [1/ms] (onset)

#73 Raw onset max bandwidth (onset)
9 76.6% LDA #41 Number of raw onsets (onset)

#52 Raw onset attack slope [1/ms] (onset)
10 76.5% LDA #49 Onset attack slope [1/ms] (onset)

#73 Raw onset max bandwidth (onset)
11 76.5% LDA #17 Twelve spectrum cepstral coeffs (spectral)

#43 Pair-bandwise number of raw onsets (onset)
47 76.0% LDA #72 Raw onset bandwidth (onset)

#82 Temporal sample centroid [ms] (other)
56 75.9% MVG #43 Pair-bandwise number of raw onsets (onset)

#80 Zero crossing rate (other)
61 75.9% MVG #43 Pair-bandwise number of raw onsets (onset)

#83 Relative bass level (other)
175 75.4% GMM #42 Bandwise number of raw onsets (onset)

#75 Onset std from ground grid [s] (onset)
224 75.3% GMM #16 Eight spectrum cepstral coeffs (spectral)

#43 Pair-bandwise number of raw onsets (onset)
239 75.3% GMM #25 Six onset specgram 2-D cepstral coeffs (spectral)

#66 Raw durational accent (onset)

tion.13 The parameter changes sacrificed modeling accuracy for the benefit of speed. Even
with the changes, the exhaustive testing of all 3486 feature pairs took over two processor
weeks on a modern workstation. The C-language EM implementation was from University
of California Irvine [Cad99].

13The maximum number of EM iterations was dropped from 100 to 50 and the required precision was

raised from 10−4 to 10−3.
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Table 4.5: Best suboptimal feature subset obtained with random subset sequential backwards elimination
with linear discriminant analysis (LDA). The performance score of LDA with these 16 features is 77.7%.

Number Name Category
6 Onset energy ratio Spectral
9 Onset spectrum bandwidth [mel] Spectral

17 Twelve spectrum cepstral coeffs Spectral
23 Eight spectrum delta cepstral coeffs Spectral
29 Eight-band onset spectrum BER Spectral
31 Four-band onset spectrum BER [dB] Spectral
38 Eight-band spectrum BER [dB] Spectral
40 Number of onsets Onset
41 Number of raw onsets Onset
52 Raw onset attack slope [1/ms] Onset
62 Raw registral IOI per tatum Onset
63 Raw registral IOI deviation from tatum [ms] Onset
64 Durational accent Onset
66 Raw durational accent Onset
71 Raw onset band centroid Onset
72 Raw onset bandwidth Onset

The best feature subset obtained with random subset sequential backwards elimination us-
ing LDA is listed in Table 4.5. The features are a mixture of features from both spectral and
onset categories. The best discrimination score, 77.7%, is reached with the combination of
these 16 features and using the LDA classifier. The improvement over the best feature pair
is a tiny 0.7 percentage units. It may be speculated that significantly better performance
could be gained from using more than two features with a GMM classifier having high
enough modeling accuracy, but finding that set of features would require significantly more
computing power.

There clearly is overlap between the best feature pairs and the best suboptimal feature set in
Table 4.5. Moreover, there is even overlap between the features in the suboptimal set: e.g.,
the features #29 and #31 basically measure the same thing, only the number of bands and
the scale (linear vs. dB) is different. The fact that this is required for better discrimination
performance is evidence of LDA being a little too simple a statistical model for this use. It
is nevertheless fast, and consequently the phenomenal accent model uses the set of features
listed in Table 4.5 and the LDA classifier.

4.3.4 Phenomenal accent model

As stated above, the aim of the phenomenal accent model is to produce a single normalized
value representing the total phenomenal accentuation (objective acoustic evidence of a beat)
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at the given observation point. Therefore, the phenomenal accent model itself is a fairly
complex decision function Ap(x) from N-dimensional feature vector domain D ⊂ R

N to
range R ⊂ R that incorporates the specified statistical classifier.

An intuitive normalized measure of phenomenal accentuation is the posterior P (ωb|x), that
is, the probability of a beat ωb given the acoustic observation x. Furthermore, it is readily
computed by the maximum a posteriori (MAP) classifier, and thus is easy to use. According
to the log-likelihood Bayes’ formula, Equation (3), the phenomenal accent equals

Ap(x) = P (ωb|x) = 1

exp [L(x, ωo)− L(x, ωb) + P(ωo)− P(ωb)] + 1
, (27)

where the log-likelihoods L(x, ωi) and the log-priors P(ωi) are readily available for both
classes ωi ∈ {ωb, ωo}. The probability of an offbeat P (ωo|x) is easy to compute from Ap

because the number of classes is fixed,

P (ωo|x) = 1− P (ωb|x) = 1− Ap(x). (28)

In short, the feature vector x is the input and the probabilities P (ωb|x) and P (ωo|x) are the
outputs of the phenomenal accent model.

4.4 Beat grid estimation

The next and final step in beat tracking after onset detection (Section 4.1) and tatum grid
estimation (Section 4.2) is to determine the period ∆ ∈ {1, 2, . . . , ∆max} and phase φ ∈
{1, 2, . . . , ∆} of the beat, given phenomenal accentuation (Section 4.3) as a function
of the metrical ground grid (Section 4.2). This is the process of finding which metrical
ground grid pulses are beats, essentially by filtering phenomenal accentuation data in order
to reveal periodicities.

A raw sequence of phenomenal accents Ap[n] only contains temporally uncorrelated infor-
mation, whereas the most important aspect of beats is the temporal recurrence. We want to
compute the probability of a beat interpretation (∆, φ), given the sequence of observations
Ap[n], according to Bayes’ formula14 (1),

P (∆, φ|Ap[n]) =
P (Ap[n]|∆, φ)P (∆, φ)∑

i

∑
j P (Ap[n]|∆i, φj)P (∆i, φj)

. (29)

Here P (Ap[n]|∆, φ) is the likelihood of observing the sequence of samples, assuming a
given beat interpretation, and P (∆, φ) is the prior probability of an interpretation.

14Again, the premiss for (29), requiring that (∆ i, φi) partition the certain eventS , holds.
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Figure 4.8: A phenomenal accent sequence Ap[n] and its interpretation likelihoods P (Ap[n]|∆, φ), taken
from the Madonna song “Like a virgin”. The winning interpretation is P (A p[n]|∆ = 4, φ = 2) ≈ 0.73,
which has been marked with filled heads in (a) and with the text “(4,2)” in (b).

4.4.1 Beat interpretation likelihood

By definition, Ap[n] = P (ωb|x[n]) is the sequence of beat probabilities. Hence, according
to Equation (28), 1−Ap[n] is the sequence of offbeat probabilities. Since the samples of the
phenomenal accent sequence Ap[n] are independent, the likelihood of a sample sequence
can be computed directly from the individual phenomenal accents as follows

P (Ap[n]|∆, φ) =
∏
i∈Φ

Ap[i] ·
∏
i/∈Φ

(1− Ap[i]), (30)

where Φ = {φ, φ + ∆, φ + 2∆, . . . , φ + L∆} is the set of beat times belonging to an
interpretation (∆, φ). Figure 4.8 exemplifies Equation (30). In Figure 4.8(a) the filled
heads represent the beats in Φ and the cleared heads the offbeats (not in Φ) corresponding
to (∆ = 4, φ = 2). For each interpretation (∆, φ) the likelihoodP (Ap[n]|∆, φ) is computed
according to (30) and plotted in Figure 4.8(b).

The beat likelihood concept has obvious counterparts in previous literature. Povel and
Essens relied on an “induction strength score”, which they defined as a measure of periodic
accentuation in a rhythm pattern [PE85]. Parncutt introduces the concept of “pulse-match
salience” for measuring periodic accentuation [Par94]. Neither of these coincide with my
probabilistic definition of the beat interpretation likelihood, although the concepts behind
the formulae are similar.

4.4.2 Beat period prior probability

The prior probability of a given beat percept depends only on the beat period

∀φ : P (∆, φ) ≡ P (∆, 1) ≡ P (∆). (31)
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Parncutt defines a lognormal probability distribution for the prior, which he calls the pulse-
period salience function

P (∆) =
1√
2πσ

exp

[
−1
2

(
1

σ
log10

∆q

µ

)2
]
, (32)

in which the parameters µ = 600 ms, the 100 BPM moderate beat period, and σ = 0.02,
the beat period deviation, are fixed constants [Par94], and q is the tatum period (see Sec-
tion 4.2). Note that additional normalization by κ would be required to make the priors sum
up to unity, ∑

i

∑
j

P (∆i, φj) =
∑
i

κiP (∆i) = 1,

which would nevertheless be done in vain, because the factor κ would cancel out of Equa-
tion (29) in the end.

4.4.3 Causal beat grid assignment

As stated in the beginning of Section 4, the whole proposed meter analysis algorithm op-
erates causally, which obviously must hold for the beat grid estimation as well. Ultimately
the beat period and phase are chosen in a similar process as the tatum period, using an
exponentially decaying window for past data, implemented with a leaky integrator (see
Section 4.2).

One term of the likelihood product, Equation (30), is evaluated at each time instant n∗

for all beat interpretations (∆, φ). The term a(∆, φ) equals either Ap[n
∗] or 1 − Ap[n

∗],
respectively depending on whether the sample belongs to the interpretation’s set of beats Φ
or not. The likelihood product is then accumulated sample after sample

P (Ap[n], n ≤ n∗|∆, φ) = a(∆, φ)cf · P (Ap[n], n ≤ n∗ − 1|∆, φ)cl. (33)

The coefficients are cl = 2
−1/10 and cf = 1−cl: the accumulated beat likelihood represents

the likelihood only in the range of about 10 samples (approximately 10 · 120 ms = 1.2 s) to
the past.

The posterior (29) is computed for all beat interpretations from the priors (32) and likeli-
hoods (33). The beat period ∆̂ is simply the period with the maximum posterior probability,
ignoring the phase,

∆̂[n∗] = argmax
∆

P (∆, φ|Ap[n], n ≤ n∗), (34)

yielding a beat period ∆̂[n∗] · q in absolute temporal units. Then, the winning beat phase φ̂

is simply chosen maximum a posteriori,

φ̂[n∗] = argmax
φ

P (∆̂[n∗], φ|Ap[n], n ≤ n∗). (35)
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Having chosen the beat period ∆̂ and phase φ̂, the grid points n satisfying

n− φ̂ = 0 (mod ∆̂) (36)

are found as the beat grid.

4.5 Estimation of subordinate metrical levels

Handed with knowledge of the tatum period q and the number of tatums per beat ∆̂, it is rel-
atively trivial to fill in the pulses on the subordinate metrical levels between tatum and beat.
The metrical well-formedness rule #3 of Lerdahl and Jackendoff states that the pulse peri-
ods of neighboring metrical levels are always related by a duple or a triple division [LJ83,
p. 69].

Most often there are not more than 6 tatums/beat, meaning that there are at most two sub-
ordinate metrical levels between the tatum and the beat. More specifically, ∆̂ is iteratively
divided by 2 and by 3 to observe if there is a duple or a triple relation to the next-lower
metrical pulse period. If there is no remainder from the division, a metrical level with a
beat period half or a third the beat period and phase coinciding with the beat phase is as-
sumed. The division result is further divided by 2 and 3 to search for a second subordinate
level. In the case of both a duple and a triple relation the ambiguity of the order of the
levels remains unanswered, and the algorithm currently simply chooses the resolution with
the triple division on the level next to the tatum.
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5 Model performance

The proposed meter recognition model consists of four main components, sound onset de-
tection, tatum grid estimation, phenomenal accent model, and beat grid estimation, as de-
scribed in Section 4. All of these components have an influence on the performance of the
overall model, and therefore it is reasonable to assess each of the components separately, in
addition to evaluating the performance of the overall system.

Furthermore, in order to assess the contribution of the individual components to total per-
formance, we would ideally like to evaluate the components and the total system with the
same metric. The metric used is a beat tracker performance metric. Evaluating the effi-
ciency of an onset detector with a beat tracker metric in general is not very informative,
but in this setting it provides an insight of the effect of the onset detector in terms of beat
tracking performance. Moreover, it is not possible to evaluate onset detector efficiency as
such unless the source material is extensively labeled by hand.

In addition to analyzing the proposed model, the comparison of it with previously pub-
lished models provides useful information about the model in general. The proposed model
is compared to the model of Scheirer due to the similar setting of the models; they are
both causal and are capable of processing real-world musical signals [Sch98b]. In fact,
no other model among the reviewed ones possess these characteristics. For simulations,
I used Scheirer’s own implementation of his model, which is freely available for research
purposes, with the author’s parameter settings intact [Sch98a].

Beat tracking performance was computed by measuring the distance from a computed beat
grid to the annotated beat grid. For each of the 330 songs in the corpus, the ground truth
beat was annotated as described in Appendix A. Various statistics of the music corpus are
described in Appendix A and Section 4.3.

5.1 Performance measure

Goto and Muraoka have considered performance evaluation of beat tracking systems. They
have published guidelines on what to take into account of the beat tracking result and how
to measure each deviation from the ground truth. The performance is the expressed as a
multidimensional vector that incorporates the different aspects of errors. [GM97]

More recently, also Cemgil and his colleagues have set out to devise a beat tracking per-
formance metric [CKDH01]. Because the measure they give is a scalar and thus facilitates
trivial comparison of the performance of two or more beat trackers, I will use their measure
here.
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Figure 5.1: (a) Percentage of beats and offbeats recognized correctly using the proposed model (solid line) and
using only phenomenal accent modeling (dashed line). (b) Performance ρ of the whole model (solid line) and
the phenomenal accent model (dashed line). Highest obtainable performance after onset detection (dash-dot)
and tatum estimation (dotted line) are also shown.

Given an I-length vector ψ of correct beat times and a J-length vector t of estimated beat
times, in seconds, Cemgil et al. define the tempo tracking performance measure

ρ(ψ, t) =

∑
imaxj W (ψi − tj)

(I + J)/2
· 100%, (37)

W (d) = exp
[−d2/(2σ2

e)
]
,

where σe = 40 ms is a parameter controlling the spread of the Gaussian observation win-
dow W (d). “The tracking index ρ can be roughly interpreted as percentage of ‘correct’
beats”, as Cemgil et al. put it. A value of ρ = 100% equates to ψ and t being identi-
cal. [CKDH01]

5.2 Results

Figure 5.1 shows a breakdown of the performance of different components of the pro-
posed algorithm. In Figure 5.1(a) the performance of the whole system is compared to the
performance of the phenomenal accent model, i.e., the system with beat grid estimation
turned off. The ordinate corresponds to the percentage of correct classifications, given the
metrical ground grid, while the abscissa designates song rank. The solid line reports correct
classification percentage when temporal periodicity is used (whole system) and the dashed
line when it is not used (system without beat grid estimation). It can be seen that in general
the temporal periodicity does help in the classification somewhat, but that it becomes really
useful only when the underlying phenomenal accentuation information is reliable enough.
In the whole corpus 80.3% of grid points are classified correctly based on phenomenal ac-
centuation purely (using the LDA classifier with features from Table 4.5) and 82.7% are
recognized correctly in beat grid estimation.
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Figure 5.2: Performance ρ of the proposed model (solid line) and the Scheirer model (dash-dot line).

Figure 5.1(b) provides a view of the contribution of each of the four main components to the
overall performance. First, the dash-dotted line illustrates the absolute highest performance
score obtainable by representing the beat tracker output with the onsets nearest to annotated
beats. Thus, it is a measure of the onset detector performance. This is also a test of the
assumption that beats usually coincide with onsets.

Next, the dotted line in Figure 5.1(b) follows the highest performance score obtainable by
considering the ground-level grid points nearest to annotated beats, i.e., it is a measure or
the joint performance of the onset detector and the tatum grid estimator. The fact that the
tatum grid performance (dotted line) surpasses the onset detector performance (dash-dotted
line) reflects the fact that the tatums coincide with beats more often than the onsets do. This
stems directly from the fact that beats are tatums, i.e., higher-level pulses are also pulses on
lower levels.

The dashed line in Figure 5.1(b) shows the joint performance of the onset detector, tatum
grid estimator and phenomenal accent model. The line corresponds to actual classifica-
tion results of the statistical phenomenal accent model using LDA and the features from
Table 4.5. Clearly, there is some room for improvement.

Finally, the solid line in Figure 5.1(b) summarizes the performance of the whole proposed
meter recognition model. The figure tells that the fourth component, beat grid estimation,
does have a positive effect on performance in the region where the underlying components
work sufficiently well. If the phenomenal accent model does not give good enough esti-
mates, then the beat grid estimator cannot rescue performance.

Figure 5.2 shows a comparison of the performance of the proposed model and Scheirer’s
model [Sch98b]. In this simulation it appeared that Scheirer’s model provides better per-
formance for all test samples. The performance of the proposed model comes nearest to
Scheirer’s in the easiest and the hardest cases.
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To summarize the average performance over all songs in the corpus, the collective perfor-
mance measure is defined:

ρ̃({ψ}, {t}) =
∑

k

∑
imaxj W (ψk,i − tk,j)∑

k(Ik + Jk)/2
· 100%, (38)

where {ψ} is a set of Ik-length correct beat time vectors and {t} is a set of Jk-length
estimated beat time vectors corresponding to song k.

Now the collective beat tracking performances are ρ̃ = 40% for the proposed model and
ρ̃ = 51% for the Scheirer model. Based on the tatum grid of the proposed model, the
highest obtainable performance score would be 78%. This shows that the tatum grid is a
feasible starting point for beat induction.

Published results of noncausal beat trackers operating on MIDI input routinely report per-
formance values ρ of 90% or more [CKDH01] [Dix01b]. Nevertheless, the two differences
(causal vs. noncausal and acoustic signal vs. MIDI input) really make a difference to the
performance. Leveraging the results from MIDI beat trackers for the benefit of audio signal
beat tracking requires an amount of preprocessing that resembles an automatic transcriber.
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6 Conclusions

The problem of musical meter recognition is a relevant research topic for the music analy-
sis and musical signal processing communities. We have witnessed an explosion of models
attempting meter recognition or beat tracking, which is a special case of meter analysis.
In this work I reviewed 21 previously published models, of which eight have been pub-
lished this year (2001). The reviewed models are all different, each having a specific set
of assumptions about the analysis problem. I have analyzed the models based on causality,
applicability for acoustic input, and functional similarity.

This thesis describes a novel computational model for the recognition of musical meter
from an acoustic signal of music. The proposed model comprises four main components:
the onset detector, the tatum grid estimator, the phenomenal accent model, and the beat
grid estimator. The model construction is a mixture of signal processing, music theory, and
statistical pattern recognition.

The onset detector computes amplitude envelopes from the input signal. Amplitude en-
velopes are computed for multiple frequency bands for robustness. Onset events are trig-
gered by rapid increases in the amplitude envelopes. Further characteristics of onsets are
computed, including onset amplitudes, bandwise inter-onset intervals, and sound attack
times.

The tatum grid estimator processes the stream of onsets and looks for the tatum, an intrinsic
quantization unit, in inter-onset intervals. The tatum grid is estimated in causal fashion,
updating an internal histogram as new onsets are detected. Finally, a derivate of the tatum
called metrical ground grid is fabricated. The ground is a variant of the tatum where all
discontinuities in period have been removed.

The proposed meter recognizer includes an internal model of phenomenal accent. In build-
ing this submodel, the performance of 83 acoustic signal features was evaluated, and a final
set of 16 features was selected. The accent model is built from acoustic signal features
with linear discriminant analysis (LDA). The phenomenal accent is modeled as a posterior
probability, as computed by LDA.

The beat grid estimator combines results from onset detection, tatum estimation, and phe-
nomenal accent modeling. It comprises simple probability calculations for finding the most
probable periodicity from phenomenal accent data. After knowing the beat, it is used in
combination with the tatum to compute pulses on subordinate metrical levels between the
beat and tatum.

The proposed system aims at generality in regard to musical genres. The music corpus
used for building the model and verifying its performance comprises excerpts from blues,
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classical, dance, folk, funk, jazz, pop, R&B, rap, rock, soul, and world music. The corpus
consists of 330 monophonic excerpts of music, each of about one minute in duration. In
addition to the acoustic signals, the corpus contained manually annotated beat positions as
a metrical reference. Beat annotation was done, because it is the most intuitive metrical
component to annotate in a real-time listening test.

The proposed method consumes acoustic input and operates causally. These two qualities
impose quite strict restrictions on model design, and only two of the 21 reviewed models
qualified as comparable to the proposed model in this respect. Fortunately, Eric Scheirer,
the author of one of these two models, provided a reference implementation of his model.
This allowed me to compare the performances of the proposed model and his model in beat
tracking. It turned out that Scheirer’s model outperformed the proposed model for all of the
330 pieces of music used for testing, but that the performance difference was small for the
easiest and the hardest pieces. However, Scheirer’s model can only be used for finding the
beat, it does not find other metrical levels.

In the course of this work I learned that tatum estimation works more robustly if only
onset timing is used and further information on sound quality, such as loudness, timbre, or
pitch, is discarded. On the other hand, estimation of the beat relies on these descriptors.
The features used for phenomenal accent estimation comprise signal spectrum features as
well as features derived from onset data. Conservative signal descriptors such as the zero
crossing rate or the crest factor did not have much use here.

The availability of beats and tatums makes it feasible to automatically measure musical
time from a piece of music and to compare different pieces on a musical time scale. This
enables applications which compute and handle metrical intervals between musical events
in addition to computing absolute time intervals. The meter model can be used as is in a
musical signal editing application to allow for automatization of time-related operations.
Knowledge of the beat and the tatum also facilitates automatic matching of two musical
pieces, even if the pieces have different tempi and tatums. Robust meter recognition is a
vital component of music information retrieval applications.

The meter model can only recognize metrical levels from the beat downwards. Further
research is required in order to find the measure from an acoustic signal. The harmonic
structure of music has to be exploited in addition to the phenomenal cues presented in this
work. Apart from the measure, the current model attempts to recognize the metrical levels
that span the musical time base. The distribution of onsets and accents in this time base
should be further investigated to recognize the fine structure of rhythm. The deliberate
deviation from the metrical grid is a well known method of musical expression, and the
deviations also carry information relevant to the listener. An example of deliberate deviation
from metrical grid is swing, very often used in jazz and funk music.
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One weakness of the proposed model is the cumulation of errors in the processing chain.
The performance evaluation showed that the beat estimator does not have any chance of
working if the phenomenal accent model is not working properly. Furthermore, if the tatum
is not reliable, the beat will not be found; if the detected onsets do not carry enough in-
formation, the correct tatum cannot be estimated. The robustness of the model should be
improved, and one way to do this would be to make e.g. tatum and beat estimation work
together instead of working separately.

The tatum estimator algorithm has been published in [Sep01]. A second publication on the
phenomenal accent model is currently under preparation. A real-time implementation of
the tatum estimator may be downloaded from [SM00].
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A Music corpus

The corpus collected in this work contains 330 musical signal excerpts, taken from commer-
cial CD’s, at 44100 Hz sample rate. From each selected recording, a characteristic excerpt
was extracted, which was then converted to a monophonic signal. The corpus contains
18963 seconds (over 5 hours and 16 minutes) of music in total, whereby average excerpt
duration equals 57.5 seconds.

The musical excerpts were selected to contain a wide range of instruments, dynamic ranges
and tempi. Recordings both with and without percussion, with and without vocals and
of studio and live performances were included. Another goal was to include representative
excerpts from different musical genres, ranging from jazz and rock through classical and big
band music to pop and electronic music. Excerpts of music recorded on different decades
is included. Figure A.1 shows a histogram of the original recording years of the songs; they
range from the 1920’s to the year 2000.

The music material has an unambiguous meter present, although a part of the songs contains
rubatos, ritardandos and accelerandos. The beat in each of the excerpts was carefully manu-
ally annotated in real time by tapping along with a pen while the excerpt was being played.
In real time listening, annotating the beat is the most natural task, while annotating some
other (especially lower) metrical level, such as the tatum, is practically impossible. The
sound of the tapping of the pen on a table was recorded and the recordings were searched
for transients. The annotated inter-beat intervals were plotted on screen and visually veri-
fied.

Figure A.2 shows a more precise picture of the distribution of tempi in the corpus, computed
from the intervals between annotated beat positions. The histograms verify the conjecture
that the beat is most salient in the vicinity of moderate tempo of about 100 BPM [Par94].

Figure A.1: Histogram (N=330) of song recording years.
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Figure A.2: Corrected histograms (N=33156) of inter-beat intervals (IBI) in (a) period and (b) frequency
units. The contributions of the seven genres are shown individually. The genres are numbered according to
Table 4.2 on page 37.

The tempo histograms in Figure A.2 have been corrected to remove period-dependent dis-
tortion caused by limited song duration. Put simply, the frequency of beats at e.g. 200 ms
period needs to be corrected by a factor of two compared with the frequency of 100 ms
beats, because there are twice as many 100 ms beats than 200 ms beats in any excerpt
of music. Therefore, the frequency of beats F(p) at period p is corrected according to
F̃(p) = F(p) · p to yield corrected frequency F̃(p).

Table A.1 below lists the names of the artists and songs in the music corpus in detail. For
each excerpt, also the annotated genre and recording year are shown. The genre numbering
is according to Table 4.2. Section 4.3 also shows statistics of the data in the corpus.

Table A.1: Music corpus samples.

Artist: Song, Genre number, Recording year Artist: Song, Genre number, Recording year
–: Deck the halls, 1, 1994 666: Bomba, 2, 1999
London concert orchestra: Swanlake: Hungarian
dance - Czardas, 1, –

Abba: Lay all your love on me, 5, –

Abba: S.O.S, 5, 1975 Abba: Waterloo, 5, 1974
Abraham Laboriel: Dear friends, 4, 1993 Abraham Laboriel: Look at me, 4, 1993
Academy chamber ensemble: Sonata in A-dur op.5/1:
allegro, 1, 1983

Academy chamber ensemble: Sonata in A-dur op.5/1:
andante–adagio, 1, 1983

Academy chamber ensemble: Sonata in A-dur op.5/1:
gavotte (allegro), 1, 1983

Academy chamber ensemble: Sonata in A-dur op.5/1:
larghetto–allegro, 1, 1983

Academy chamber ensemble: Sonata in e minor: al-
legro, 1, 1983

Academy chamber ensemble: Sonata in e minor:
allemande (andante allegro), 1, 1983

Academy chamber ensemble: Sonata in e minor: an-
dante larghetto–adagio, 1, 1983

Academy chamber ensemble: Sonata in e minor:
gavotte (allegro), 1, 1983

Academy chamber ensemble: Sonata in e minor: ron-
deau, 1, 1983

Academy chamber ensemble: Sonata in e minor:
sarabande (largo assai), 1, 1983

Ahmad Jamal: Autumn in New York, 4, 1958 Ahmad Jamal: The girl next door, 4, 1958
Al DiMeola: Dark eye tango, 4, 1978 Al DiMeola: Mediterranean sundance, 4, 1977
Alex Welsh: Maple leaf rag, 4, 1988 All-4-One: I turn to you, 6, 1996
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Artist: Song, Genre number, Recording year Artist: Song, Genre number, Recording year
Andras Adorjan and Jorge de la Vida: Jalousie, 7,
2000

Antero Jakoila: El bandolero, 7, 1997

Antero Jakoila: Pieni tulitikkutyttö, 7, 1997 Armand van Helden: Alienz, 2, 1999
Armand van Helden: Mother earth, 2, 1999 Armand van Helden: The boogie monster, 2, 1999
Armenia Philharmonic orchestra: The Sabre dance, 1,
1991

Art of noise: Something always happens, 2, 1996

Artful dodger feat.Craig David: Re-rewind, 2, 2000 Artful dodger feat.Lynn Eden: Outrageous, 2, 2000
Artful dodger feat.MC Alistair: R u ready, 2, 2000 Astrud Gilberto, Stan Getz: Corcovado, 7, 1964
B.B King: How blue can you get, 4, 1964 B.B King: The thrill is gone, 4, 1969
B.B.King: Hummingbird, 4, 1970 BeeGees: Alone, 5, 1997
BeeGees: Closer than close, 5, 1997 BeeGees: Still waters run deep, 5, 1997
Benitez: Mariposa (part 1), 5, 1976 Black sugar: Viajecito, 5, 1971
Bob Marley: How many times, 7, – Bob Marley: Sun is shining, 7, –
Bob Wilber and Antti Sarpila: Lester’s bounce, 4,
1991

Bob Wilber and Antti Sarpila: Moon song, 4, 1991

Bob Wilber and Antti Sarpila: Rent party blues, 4,
1991

Boo Radleys: Lazarus, 5, 1993

Boo Radleys: Leaves and sand, 5, 1993 Boo Radleys: Upon 9th and Fairchild, 5, 1993
Boris Gardiner: I Wanna Wake Up With You, 7, 1987 Brendan Larrissey: Mist on the mountain/Three little

drummers, 7, 1995
Brian Green’s dixie kings: Tiger rag, 4, 1988 Britney Spears: Lucky, 5, 2000
Britney Spears: Oops! I did it again, 5, 2000 Busta Rhymes: One, 3, 1997
Busta Rhymes: Turn it up (Remix) Fire it up, 3, 1997 Busta Rhymes: When disaster strikes, 3, 1997
Béla Fleck and the Flecktones: Cheeseballs in Cow-
town, 5, 1992–96

Béla Fleck and the Flecktones: Shubbee’s doobie, 5,
–

Béla Fleck and the Flecktones: Lochs of dread, 5, – Béla Fleck and the Flecktones: Stomping grounds, 5,
–

Camarata Labacensis: Eine kleine nachtmusik:
menuetto, 1, 1993

Celine Dion: My heart will go on, 5, 1998

Celine Dion: River deep, mountain high, 5, 1998 Chango: Mira pa’ca, 5, 1975
Chicago: 25 or 6 to 4, 5, 1975 Chicago: Colour my world, 5, 1975
Chicago: Saturday in the park, 5, 1975 Chick Corea elektric band: Inside out, 4, 1990
Children of Bodom: Towards Dead End, 5, 1998 City of London Sinfonia: Suite in F major: Menuet,

1, 1986
City of London Sinfonia: Suite in F major: Air, 1,
1986

Clannad: Coinleach ghlas an fhómhair, 7, 1995

Consortium classicum: Introduktion und elegie für
klarinette, zwei violinen, viola und violoncello:
rondo: allegro scherzando, 1, 1990

Coolio: 2 minutes & 21 seconds of funk, 3, 1997

Coolio: Hit ’em, 3, 1997 Coolio: The devil is dope, 3, 1997
Covent Garden royal opera choir and orchestra: Hep-
realaisten orjien kuoro, 1, 1989

Cradle of filth: Beauty slept in Sodom, 5, 1996

Cream: Sunshine of your love, 5, – Creedence clearwater revival: (wish I could) Hide-
away, 5, –

Creedence clearwater revival: Have you ever seen the
rain, 5, –

Creedence clearwater revival: It’s just a thought, 5, –

Crosby, Stills, Nash : Young, Dream for him, 5, 1999 Crosby, Stills, Nash : Young, Heartland, 5, 1998
Crosby, Stills, Nash : Young, Looking forward, 5,
1998

D’Angelo: I found my smile again, 6, 1996

Dallas brass: Carol of the bells, 1, 1994 Dan Stewart: New Orleans blues, 4, 1920’s
Daniel Barenboim: Lieder ohne worte op.19, no.2 a-
moll: andante espressivo, 1, 1974

Daniel Barenboim: Lieder ohne worte op.19, no.5 fis-
moll: piano agitato, 1, 1974

Daniel Barenboim: Lieder ohne worte op.30, no.6 fis-
moll: allegretto tranquillo, 1, 1974

Das salonorchester Cölln: Albumblatt, 1, 1982

Das salonorchester Cölln: Notturno no.3, Liebe-
straum, 1, 1982

Das salonorchester Cölln: Ungarischer tanz no.5, 1,
1982
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Artist: Song, Genre number, Recording year Artist: Song, Genre number, Recording year
Deisix: Scream bloody core, 2, 1998 Delerium: Silence (DJ Tiesto mix), 2, 2000
Depeche Mode: It’s no good, 5, 1997 Depeche Mode: Personal Jesus, 5, 1989
Depeche mode: Enjoy the silence, 5, 1990 Desmond Dekker: You Can Get It If You Really Want,

7, 1987
Dire Straits: Money for nothing, 5, 1985 Dire straits: Ride across the river, 5, 1985
Dubravka Tomsic: sonate no.14 C sharp minor op27
no 2: adagio sostenuto (Moonlight sonata), 1, 1993

Dune: Can’t stop raving, 2, 1995

Eagles: Hotel California, 5, 1994 Eagles: Take it away, 5, 1994
Energy 52: Café del Ma, 2, 1997 Erkki Rautio (cello), Izumi Tateno (piano): Berceuse,

1, 1992
Éva Maros: Pavana con su glosa, 1, 1994 Faith No More: Epic, 5, 1989
Frank Sinatra: Bad, bad Leroy Brown, 5, 1973 Frank Sinatra: Strangers in the night, 5, 1966
Frank Sinatra and Nancy Sinatra: Somethin’ stupid,
5, 1967

Gladys Knight: You, 5, 1987

Gladys Knight and the Pips: It’s gonna take all our
love, 5, 1987

Gladys Knight and the Pips: Love overboard, 5, 1987

Gloria Gaynor: I will survive, 5, 1978 Goldie: Angel, 2, 1995
György Geiger (trumpet), Éva Maros (harp): Le
Coucou, 1, 1994

HIM: Bury Me Deep Inside Your Arms, 5, 1999

hamburg chamber orchestra: The four seasons con-
certo op.8 no.1: Spring, 1, 1993

Hamburg chamber orchestra: The four seasons con-
certo op.8 no.2: summer, 1, 1993

Hamburg chamber orchestra: The four seasons con-
certo op.8 no.3: autumn, 1, 1993

Hamburg chamber orchestra: The four seasons con-
certo op.8 no.4: winter, 1, 1993

Hamburg radio symphony: Ouverture Fidelio, op.72,
1, 1993

Harry van Walls: Tee nah nah, 6, 1950

Headhunters: Frankie and Kevin, 4, 1998 Headhunters: Skank it, 4, 1998
Horacio Salgan and Ubaldo de Lio: El Choclo, 7,
2000

Howlin’ Wolf: Back door man, 4, –

Humphrey Lyttleton: Black & blue, 4, 1988 Hungarian state opera chamber orchestra: Sonata
no.10 for Trumpet and strings, 1, 1991

I Salonisti: Kuolema op.44: Valse Triste, 1, 1983 I Salonisti: Serenata, 1, 1983
Ida Czernecka: Mazurka no.47 in a minor op.68 no.2,
1, 1993

Inner circle: Mary Mary, 7, 1979

Inner circle: Standing firm, 7, 1979 Inner circle: We ’a’ rockers, 7, 1979
James Brown: It’s time to love (put a little love in your
heart), 6, 1991

James Brown: Show me, 6, 1991

James Brown: Standing on higher ground, 6, 1991 Jane’s addiction: Been caught stealing, 5, 1989
Jane’s addiction: Jane says, 5, 1991 Jane’s addiction: Kettle whistle, 5, 1997
Jay-Z: Hard knock life, 3, 1998 Jay-Z feat.DMX: Money, cash, hoes, 3, 1998
Jay-Z feat.Foxy Brown: Paper chase, 3, 1998 Jesus Jones: The devil you know, 5, 1993
Jesus Jones: Your crusade, 5, 1993 Joe Cocker: That’s all I need to know, 5, 1997
Joe Cocker: That’s the way her love is, 5, 1997 Joe Cocker: Tonight, 5, 1997
Joe Derrane with Carl Hession: Humours of Lis-
sadell/Music in the glenn/ Johnson’s, 7, 1995

Joe Morris: The applejack, 6, 1948

Joe Turner: Sweet sixteen, 6, 1952 John Lee Hooker: Ground hog blues, 4, –
John Lee Hooker: I love you baby, 4, – John Ogdon, Brenda Lucas: En bateau, 1, 1998
Johnnie Taylor: Lady my whole world is you, 6, 1984 Joni Mitchell: For free, 7, 1969
Joni Mitchell: Ladies of the canyon, 7, 1968 Joni Mitchell: Rainy night house, 7, 1969
KC and the sunshine band: That’s the way (I like it),
5, 1975

Kamariorkesteri Vox Artis: Serenade for strings in C
major, op.48: II Walzer (moderato tempo di valse), 1,
1993

Kenny Rogers: Ain’t no sunshine, 5, 1999 Kenny Rogers: Love don’t live here anymore, 5, –
Kenny Rogers: Three times a lady, 5, 1999 Kiss: Journey of 1,000 years, 5, 1998
Kiss: Psycho circus, 5, 1998 Kiss: Within, 5, 1998
Kool : the gang, Hollywood swinging, 6, 1973 Kool : the gang, Spirit of the boogie, 6, 1975
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Artist: Song, Genre number, Recording year Artist: Song, Genre number, Recording year
Kool and the gang: Funky stuff, 6, 1973 Korn: Got the Life, 5, 1997
Latimore: Bad risk, 6, 1984 Lauryn Hill: I used to love him, 6, 1998
Lauryn Hill: Lost ones, 6, 1998 Lauryn Hill: To Zion, 6, 1998
Lee Ritenour: Starbright, 4, 1983 Lee Ritenour: Tush, 4, 1983
Life of agony: Drained, 5, 1995 Life of agony: Other side of the river, 5, 1995
London concert orchestra: Swanlake: Scene, 1, – London concert orchestra: Swanlake: Spanish dance,

1, –
London festival orchestra: Bolero, 1, 1993 London philharmonic orchestra: Die Zauberflöte: ou-

verture, 1, 1993
London philharmonic orchestra: Symphony no.41 in
C major, Jupiter: Allegro, 1, 1993

London symphony orchestra: Faust (ballet): adagio,
1, 1993

Lucy Pearl: Don’t mess with my man, 6, 2000 Lucy Pearl: Everyday, 6, 2000
Lucy Pearl: Lucy Pearl’s way, 6, 2000 Lynyrd Skynyrd: Free bird, 5, 1973
Lynyrd Skynyrd: Swamp music, 5, 1974 Malo: Street man, 5, 1973
Mariah Carey: My all, 5, 1998 Marilyn Manson: Sweet Dreams, 5, 1995
Marián Lapsansky (solo), Slovak Philharmonic Or-
chestra: Piano Concerto in A minor : Allegro vivace,
1, –

Marusha: Somewhere over the rainbow, 2, 1993

McKinley Mitchell: The end of the rainbow, 6, 1984 Members of Mayday: The day X, 2, 1996
Memphis Slim: Really got the blues, 4, 1950 Memphis Slim: Tiajuana, 4, 1952
Miles Davis: ’Round midnight, 4, 1956 Miles Davis: Human nature, 4, 1985
Miles Davis: Seven steps to heaven, 4, 1963 Miles Davis: Someday my prince will come, 4, 1963
Miles Davis: Time after time, 4, 1985 Monica: For you I will, 6, 1996
Mozart Festival Orchestra: Horn concerto nr.2 Es
Major Andante, 1, –

Muddy Waters: Baby please don’t go, 4, –

Muddy Waters: Forty days and forty nights, 4, – Munich chamber ensemble: Brandenburg concerto
no.2 F major : Allegro, 1, 1993

Munich chamber orchestra: Brandenburg concerto
no.5 D major: Affettuoso, 1, 1993

Neuroactive: Inside your world, 2, 1998

Neuroactive: Space divider, 2, 1998 New York philharmonic orchestra: Hungarian dance
number 1 in G minor, 1, –

New York trumpet ensemble: Rondeau fron Sym-
phonies de fanfares, 1, 1982

Närpes skolmusikkår-Närpes youth band:
Malagueña, 4, 1995

Närpes skolmusikkår-Närpes youth band: The pink
panther, 4, 1995

Närpes skolmusikkår-Närpes youth band: Water-
melon man, 4, 1995

Oslo Gospel Choir: Nearer my god to thee, 6, 1991 Oslo Gospel Choir: Open up my heart, 6, 1991
Paco de Lucia: Chanela, 4, 1981 Paco de Lucia: Solo quiero caminar, 4, 1981
Pat Metheny group: Follow me, 4, 1997 Pat Metheny group: Too soon tomorrow, 4, 1997
Paula Abdul: Opposites Attract, 5, 1988 Petter: En resa, 3, 1998
Petter: Minnen, 3, 1998 Petter feat.Kaah: Ut och in på mig själv, 3, 1998
Philharmonia quartett Berlin, soloist Dieter Klöcker:
Quintett Es-dur: allegro moderato, 1, 1990

Philharmonic ensemble pro musica: Peer Gynt suite
no.1 op.46: Anitra’s dance, 1, 1993

Philharmonic ensemble pro musica: Peer Gynt suite
no.1 op.46: Death of Åse, 1, 1993

Philharmonic ensemble pro musica: Peer Gynt suite
no.2 op.55: Solveij’s song, 1, 1993

Piffaro: Ave regina caelorum, 1, 1999 Piffaro: Entre du fol, 1, 1999
Piffaro: Gaillarde, 1, 1999 Piffaro: Passe et medio & reprise, 1, 1999
Piffaro: Pavane&Gaillarde “la Dona”, 1, 1999 Piffaro: j’ay pris amours, 1, 1999
Pro musica antiqua: Fireworks music, Concerto
grosso no.26 D major: La paix, 1, 1993

R.Kelly: I believe I can fly, 6, 1996

RMB: Spring, 2, 1996 Radio symphony orchestra Ljubjana: Symphony no.8
Bb minor, The unfinished symphony: allegro moder-
ato, 1, 1993

Radio symphony orchestra Ljubljana: Symphony
no.5in C major: allegro con brio, 1, 1993

Red Hot Chili Peppers: Parallel Universe, 5, 1999

Robert Wells: Bumble-bee boogie, 5, 1998 Robert Wells: Rhapsody in rock IV, 5, 1998
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Artist: Song, Genre number, Recording year Artist: Song, Genre number, Recording year
Robert Wells: Spanish rapsody, 5, 1997 Roberto Goyeneche and Nestor Marconi: Ventanita

Florida, 7, 2000
Royal Danish symphony orchestra: Hungarian
march, 1, 1993

Rudolf Heinemann: Sonate 1 f-moll: allegro moder-
ato e serioso, 1, 1990

Ruth Brown: Teardrops from my eyes, 6, 1950 Sade: Kiss of life, 6, 1992
Sade: No Ordinary Love, 6, 1992 Salt ’n Pepa: Shoop, 6, 1993
Salt ’n Pepa feat.En Vogue: Whatta man, 6, 1993 Santana: Black magic woman, 5, 1970
Santana: She’s not there, 5, 1977 Sapo: Been had, 5, 1974
Sash! feat.Rodriguez: Ecuador, 2, 1997 Saxon: Dogs of war, 5, 1995
Saxon: The great white buffalo, 5, 1995 Shania Twain: Man! I feel like a woman, 5, 1998
Shania Twain: You’re still the one, 5, 1998 Skunk Anansie: Brazen (Weep), 5, 1996
Skylab: The trip (Roni Size mix), 2, 1996 Soile Viitakoski (vocals), Marita Viitasalo (piano):

Solveig’s song, 1, 1989
Spyro Gyra: Heart of the night, 4, 1996 Spyro Gyra: Surrender, 4, 1996
Spyro Gyra: Westwood moon, 4, 1996 Stan Getz and Joao Gilberto: Desafinado, 7, 1963
Staple singers: Heavy makes you happy, 6, 1970 Staple singers: Long walk to D.C., 6, 1971
Staple singers: Respect yourself, 6, 1972 Steppenwolf: Magic carpet ride, 5, 1968
Stevie Wonder: For your love, 6, 1999 Stevie Wonder: You are the sunshine of my life, 6,

1999
Stone: Empty corner, 5, 1992 Stone: Mad hatter’s den, 5, 1992
Suede: Trash, 5, 1996 Sunbeam: Outside world, 2, 1994
Symphonic orchestra Berlin: Love to the 3 oranges:
march, 1, 1994

Süddeutsche philharmonic: A midsummer night’s
dream. Wedding march, 1, 1993

Süddeutsche philharmonic: A midsummer night’s
dream. Notturno. Con moto tranquillo, 1, –

Süddeutsche philharmonic: A midsummer night’s
dream. Dance of the clowns, 1, 1993

Südwestdeutsches kammerorchester: Serenade nr.2
F-dur für streichorchester:Allegro moderato, 1, 1974

Südwestdeutsches kammerorchester: Zwei elegische
melodien nach gedichten von A.O.Vinje für Strei-
chorchester:Letzter Frühling, 1, 1974

Take 6: Fly away, 6, 1998 Take 6: Mary, 6, 1988
Terminal choice: Totes Fleisch, 2, 1998 Terry Lighfoot: Summertime, 4, –
the Beatles: Love me do, 5, 1963 the Beatles: Misery, 5, 1963
the Beatles: Misery, 5, 1963 The Brecker brothers: Sponge, 4, 1978
The Brecker brothers: Squish, 4, 1980 The Candomino Choir: Soi Kiitokseksi Luojan —

Sing Now to the Creator, 1, –
The Dave Weckl band: Mud sauce, 4, 1998 The Dave Weckl band: Song for Claire, 4, 1998
The Dave Weckl band: The zone, 4, 1998 The Dutch swing college band: Savoy blues, 4, 1988
The Jacksons: Can you feel it, 5, 1980 The New York trumpet ensemble: Canzon no.1, 1615,

1, 1982
The New York trumpet ensemble: Sonata à 7, 1, 1982 The New York trumpet ensemble: Toccata, 1, 1982
The golden nightingale orchestra: Annie’s song, 5,
1988

The golden nightingale orchestra: Love story, 5, 1988

The golden nightingale orchestra: The sound of si-
lence, 5, 1988

The move: Flowers in the rain, 5, 1967

The philharmonia orchestra: Concerto no.2 for trum-
pet: II–grave, 1, 1986

The weather girls: It’s raining men, 5, 1982

Toni Braxton: Let it flow, 6, 1996 Toni Braxton: There’s no me without you, 6, 1996
Toni Braxton: Un-break my heart, 6, 1996 Travis: Turn, 5, 1999
Tufàan: Probe (the Green Nuns of Revolution Mix), 2,
1996

Turner Parrish: Ain’t gonna be your dog no more, 4,
1920’s

Ultra Naté: Free, 2, 1997 Walter Wanderley: Ó barquinho, 7, 1967
Weather report: Birdland, 4, 1977 Weather report: Harlequin, 4, 1977
Willie Harris: West side blues, 4, 1920’s Zucchero: Eppure non t’amo, 5, 1996
Zucchero: Menta e Rosmarino, 5, 1996 Zucchero: Senza una donna, 5, 1987
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B Acoustic signal features

The 83 acoustic signal features tested during the phenomenal accent model training are
described here. First, all the features, their dimensions and physical units are gathered into
Table B.1, together with a unique number for each feature. Then, the computation of the
features is described. The features are based on front end data as computed in Section 4.

Table B.1: Acoustic signal features.

Number Category Name Dimension Unit
1 Spectral Onset spectrum power 1 -
2 Spectral Onset spectrum power 1 dB
3 Spectral Relative onset spectrum power 1 -
4 Spectral Spectrum power 1 -
5 Spectral Spectrum power 1 dB
6 Spectral Onset energy ratio 1 -
7 Spectral Onset energy ratio 1 dB
8 Spectral Onset spectrum brightness (centroid) 1 mel
9 Spectral Onset spectrum bandwidth 1 mel

10 Spectral Onset temporal centroid 1 ms
11 Spectral Onset temporal width (duration) 1 ms
12 Spectral Four onset spectrum cepstral coeffs 4 -
13 Spectral Eight onset spectrum cepstral coeffs 8 -
14 Spectral Twelve onset spectrum cepstral coeffs 12 -
15 Spectral Four spectrum cepstral coeffs 4 -
16 Spectral Eight spectrum cepstral coeffs 8 -
17 Spectral Twelve spectrum cepstral coeffs 12 -
18 Spectral Four onset temporal cepstral coeffs 4 -
19 Spectral Four onset spectrum delta cepstral coeffs 4 -
20 Spectral Eight onset spectrum delta cepstral coeffs 8 -
21 Spectral Twelve onset spectrum delta cepstral coeffs 12 -
22 Spectral Four spectrum delta cepstral coeffs 4 -
23 Spectral Eight spectrum delta cepstral coeffs 8 -
24 Spectral Twelve spectrum delta cepstral coeffs 12 -
25 Spectral Six onset specgram 2-D cepstral coeffs 6 -
26 Spectral Twenty-one onset specgram 2-D cepstral coeffs 21 -
27 Spectral Forty-five onset specgram 2-D cepstral coeffs 45 -
28 Spectral Four-band onset spectrum BER 4 -
29 Spectral Eight-band onset spectrum BER 8 -
30 Spectral Twelve-band onset spectrum BER 12 -
31 Spectral Four-band onset spectrum BER 4 dB
32 Spectral Eight-band onset spectrum BER 8 dB
33 Spectral Twelve-band onset spectrum BER 12 dB
34 Spectral Four-band spectrum BER 4 -
35 Spectral Eight-band spectrum BER 8 -
36 Spectral Twelve-band spectrum BER 12 -
37 Spectral Four-band spectrum BER 4 dB
38 Spectral Eight-band spectrum BER 8 dB
39 Spectral Twelve-band spectrum BER 12 dB
40 Onset Number of onsets 1 -
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Number Category Name Dimension Unit
41 Onset Number of raw onsets 1 -
42 Onset Bandwise number of raw onsets 8 -
43 Onset Pair-bandwise number of raw onsets 4 -
44 Onset Onset amplitude 1 -
45 Onset Onset amplitude 1 dB
46 Onset Raw onset amplitude 1 -
47 Onset Raw onset amplitude 1 dB
48 Onset Onset attack duration 1 ms
49 Onset Onset attack slope 1 1/ms
50 Onset Onset attack duration per registral IOI 1 -
51 Onset Raw onset attack duration 1 ms
52 Onset Raw onset attack slope 1 1/ms
53 Onset Raw onset attack duration per registral IOI 1 -
54 Onset Registral IOI 1 s
55 Onset Registral IOI 1 ln s
56 Onset Median registral IOI 1 s
57 Onset Registral IOI per tatum 1 -
58 Onset Registral IOI deviation from tatum 1 ms
59 Onset Raw registral IOI 1 s
60 Onset Raw registral IOI 1 ln s
61 Onset Raw median registral IOI 1 s
62 Onset Raw registral IOI per tatum 1 -
63 Onset Raw registral IOI deviation from tatum 1 ms
64 Onset Durational accent 1 -
65 Onset Median durational accent 1 -
66 Onset Raw durational accent 1 -
67 Onset Median raw durational accent 1 -
68 Onset Onset band centroid 1 -
69 Onset Onset bandwidth 1 -
70 Onset Onset max bandwidth 1 -
71 Onset Raw onset band centroid 1 -
72 Onset Raw onset bandwidth 1 -
73 Onset Raw onset max bandwidth 1 -
74 Onset Onset deviation from ground grid 1 s
75 Onset Onset std from ground grid 1 s
76 Onset Raw onset deviation from ground grid 1 s
77 Onset Raw onset std from ground grid 1 s
78 Other Bass level 1 -
79 Other Bass level 1 dB
80 Other Zero crossing rate 1 1/s
81 Other Crest factor 1 -
82 Other Temporal sample centroid 1 ms
83 Other Relative bass level 1 -

Spectral features are all based on a warped spectrogram of a segment of signal. The
warped spectrogram S(t, f) is a concatenation of power spectral density estimates com-
puted with a 1024-point fast Fourier transform (FFT) (49% overlap between frames; using
the Hamming window) and warped to a psychoacoustic mel-frequency scale (39 triangular
filters spanning 0–22 kHz in 103 mel steps) [Kar99]. The temporal span of the spectrogram
depends on the interval between the metrical ground grid points.
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From the warped signal spectrogram S(t, f), t ∈ {1, 2, . . . , T}, f ∈ {1, 2, . . . , 39} an
estimate of the onset spectrogram So(t, f) is obtained by subtracting the linear temporal
trend of S(t, f) from the spectrogram. The trend S(t, f)−So(t, f) is computed by averaging
the temporal logarithmic difference between frames.

Spectral power is the first of spectral features, and functions as a simple measure of sound
loudness. Separate features are devoted for onset spectrum power and total spectrum power,
as well as for the ratio of them. Spectral power is obtained by summing over the spectra,

Spectral power (SP) =
1

T

∑
f

T∑
ξ=1

S(ξ, f) (39)

Onset spectral power (OSP) =
∑
f

max
ξ

So(ξ, f). (40)

Spectral powers are included both in linear and dB units for the sake of more efficient
statistical analysis. Furthermore, the relative value of onset spectral power with respect to
long-term average is computed so as to reveal context-independent properties,

Relative onset spectral power =
OSP[n]∑∞

k=−∞ OSP[k]h[n− k]
, (41)

where h[n] is a 10-point finite impulse response low-pass filter used for computing the
preceding spectral power trend with a moving average. The variable n is the signal frame
index.

Simple timbral description is achieved with characteristic features such as power spectrum
centroid and power bandwidth around centroid [Li00]. The centroid is acknowledged as
correlating with the perceived brightness of sounds [EK00]. In addition to the spectral
centroid, the temporal centroid and temporal power width in the analysis window are com-
puted. [Li00]

Of a single spectrum, multiple mel-frequency cepstral coefficient vectors are computed,
each having a different number of cepstral coefficients and thus exhibiting different cepstral
precision. For 2-D cepstral features, the two-dimensional discrete cosine transform (DCT)
of the log-spectrogram is unravelled into a one-dimensional feature vector using zig-zag
ordering as found in the JPEG image compression standard [Wal91].

Spectral band energy ratios (BER) are computed by taking the ratios of spectral powers,
Equation (39), of narrow bands to the whole spectral power SP. The ratios are computed
with different numbers of bands. The bandwidths are constant on the mel scale. BER’s of
both the signal spectrum and the onset spectrum are computed.

Onset features form the second main category of acoustic features. Onset features are
based on onset detector data (described in Section 4.1). The number of onsets equals the
number of onsets nearest to the given grid point. In practice the number of onsets sur-
rounding each grid point is limited, and thus the number of onsets usually obeys a binary
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distribution [0, 1]. In these cases the number of onsets feature really reduces to indicating
whether there is an onset or not in the vicinity of the grid point. The number of raw onsets
is a feature having also higher values. It is the number of raw onsets before combination
(see Section 4.1). In addition to the total number of onsets, a vector of the numbers of raw
onsets on each band, as well as a vector of the numbers of raw onsets on four pairs of
adjacent bands, are computed.

Onset amplitudes are an estimate of the same subjective property as features #1 and #2
(onset spectral power), which is onset loudness. However, due to the radical difference in
the way of computing features #1 and #44, they both are included. Onset amplitudes are
included both in linear and dB units. Amplitude computation was described on page 31.

Onset attack time is a relevant feature successfully used in categorizing instrument
sounds [PMH00]. Onset attack time computation is described in Section 4.1. In addi-
tion to the attack time as such, the attack slope, i.e., onset amplitude divided by attack time,
and the attack duration divided with the registral IOI (see below) are included. Attack slope
attempts to describe the sharpness of the attack, while the ratio of attack duration to registral
IOI represents the duration of the attack portion relative to the sound duration.

Various sources emphasize high correlation between sound durations and beats, and be-
tween inter-onset intervals and beats [LJ83] [AD90] [Ros92] [Par94] [Toi98] [Dix01a].
Nonetheless, as mentioned in several sources doing processing of musical signals, it is
impracticable to acquire information of note durations from audio signals of polyphonic
music. For this reason I am reverting to using an approximate bandwise, or registral IOI
(as in [TS99]), as a replacement of the exact sound duration. Registral IOI computation
is described above in Section 4.1. The registral IOI’s, as computed with Equation (20),
have the favourable property that the inter-onset interval computation does not introduce
any additional correlation with onset amplitude.

In comparison to Temperley and Sleator, my onset detector computes registral IOI’s on a
13-semitone (1 and 1/12-octave) bandwidth, as opposed to their more precise 9-semitone
(2/3-octave) pitch region [TS99]. Despite this difference and the fact that Temperley and
Sleator are processing MIDI and not audio signals, I am essentially evaluating the registral
IOI, as they call it, of each onset.

Whereas feature #54 is the longest registral IOI encountered in the raw onsets falling to
the grid point, feature #56 is the median of them. While I am not entirely confident on
which feature better characterizes beats, I decided to include them both in feature selection.
Finally, also the ratio and remainder of registral IOI to tatum period q are computed. It
was observed that the registral IOI values often correlated directly with the beat periods,
indicating that the registral IOI’s should be approximate integral multiples of the tatum
period.
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The sound durational accent Ad is a function of the registral IOI d [Par94], defined as

Ad = [1− ed/(500 ms)]2. (42)

In verification of this model, the durational accents of sounds at a grid point are computed,
based on the registral IOI and median registral IOI values computed above.

As well as computing the centroid and bandwidth from the spectrogram (features #8
and #9), the centroid and bandwidth are computed from the distribution of onsets on differ-
ent bands. The features are computed similarly [Li00], only substituting onset bands and
amplitude data. The “max bandwidth” feature equals simply the total number of bands
containing an onset within the grid point.

Onset timing detail is further characterized by comparing the onset timing with the metrical
ground grid point. The mean absolute deviation as well as standard deviation are included
as features. The motivation for measuring these is based on the conjecture that onsets
tend to deviate less from metrically strong pulses (beats) and more from metrically weak
pulses [Ros92].

Other features include the celebrated zero-crossing rate (ZCR). It has been successfully
used in a multitude of signal analysis applications [SS97] [ZK99] [GPD00] and can be
considered almost a standard among audio content description features. Crest factor, i.e.,
the ratio of peak amplitude to the RMS value, can be considered as another standard fea-
ture [EK00]. Temporal centroid is another feature that is computed directly from the acous-
tic signal waveform [PMH00]. Bass level is almost extensively used as the sole acoustic
feature in commercial beat tracking implementations [WBKW96]; in addition to the di-
rect linear and dB variants of it I am incorporating a version relative to long-term average
computed similarly as the relative spectral power, see Equation (41).
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